Special Issue:
SPECIAL TOPIC — Ion beam modification of materials and applications
|
SPECIAL TOPIC—Ion beam modification of materials and applications |
Prev
Next
|
|
|
Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation |
Peng-Wei Hou(侯鹏伟)1,2, Yu-Hao Li(李宇浩)1,2,†, Zhong-Zhu Li(李中柱)1,2, Li-Fang Wang(王丽芳)3, Xingyu Gao(高兴誉)3, Hong-Bo Zhou(周洪波)1,2,‡, Haifeng Song(宋海峰)3, and Guang-Hong Lu(吕广宏)1,2 |
1 Department of Physics, Beihang University, Beijing 100191, China; 2 Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China; 3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation. Hereby, we systematically investigate the influence of He on the evolution of Frenkel pairs and collision cascades in tungsten (W) via using the object kinetic Monte Carlo (OKMC) method. Our findings suggest that the presence of He has significant effect on the evolution of irradiation-induced defects. On the one hand, the presence of He can facilitate the recombination of vacancies and self-interstitial atoms (SIAs) in W. This can be attributed to the formation of immobile He-SIA complexes, which increases the annihilation probability of vacancies and SIAs. On the other hand, due to the high stability and low mobility of He-vacancy complexes, the growth of large vacancy clusters in W is kinetically suppressed by He addition. Specially, in comparison with the injection of collision cascades and He in sequential way at 1223 K, the average sizes of surviving vacancy clusters in W via simultaneous way are smaller, which is in good agreement with previous experimental observations. These results advocate that the impurity with low concentration has significant effect on the evolution of irradiation-induced defects in materials, and contributes to our understanding of W performance under irradiation.
|
Received: 05 March 2021
Revised: 12 April 2021
Accepted manuscript online: 14 April 2021
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.72.Cc
|
(Kinetics of defect formation and annealing)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018002), the National Natural Science Foundation of China (Grant No. 11905135), and the National MCF Energy R&D Program of China (Grant No. 2018YFE0308103). |
Corresponding Authors:
Yu-Hao Li, Hong-Bo Zhou
E-mail: yuhaoli@buaa.edu.cn;hbzhou@buaa.edu.cn
|
Cite this article:
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏) Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation 2021 Chin. Phys. B 30 086108
|
[1] Bloom E E, Zinkle S J and Wiffen F W 2004 J. Nucl. Mater. 329 12 [2] Zinkle S J 2005 Phys. Plasmas 12 058101 [3] Yin H, Wang J, Guo W G, Cheng L and Lu G H 2019 Tungsten 1 132 [4] Hu X X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D and Katoh Y 2016 J. Nucl. Mater. 480 235 [5] Li Y G, Zheng Q R, Wei L M, Zhang C G and Zeng Z 2020 Tungsten 2 34 [6] Hu X X, Koyanagi T, Fukuda M, Katoh Y, Snead L L and Wirth B D 2016 J. Nucl. Mater. 470 278 [7] Song Y Y P, Qiu W B, Chen L Q, Yang X L, Deng H, Liu C S, Zhang K and Tang J 2020 Chin. Phys. B 29 105202 [8] Hu L, Wirth B D and Maroudas D 2017 Appl. Phys. Lett. 111 081902 [9] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 025016 [10] El-Atwani O, Aydogan E, Esquivel E, Efe M, Wang Y Q and Maloy S A 2018 Acta Mater. 147 277 [11] Bonny G, Castin N, Bakaev A, Sand A E and Terentyev D 2020 Comp. Mater. Sci. 181 109727 [12] Sand A E, Nordlund K and Dudarev S L 2014 J. Nucl. Mater. 455 207 [13] Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X and Chen J M 2016 Chin. Phys. B 25 056102 [14] Katoh Y, Snead L L, Garrison L M, Hu X, Koyanagi T, Parish C M, Edmondson P D, Fukuda M, Hwang T, Tanaka T and Hasegawa A 2019 J. Nucl. Mater. 520 193 [15] Abernethy R G 2017 Mater. Sci. Tech. 33 388 [16] Zinkle S J and Busby J T 2009 Mater. Today 12 12 [17] Zinkle S J and Was G S 2013 Acta Mater. 61 735 [18] Gilbert M R, Dudarev S L, Zheng S, Packer L W and Sublet J C 2012 Nucl. Fusion 52 083019 [19] Thompson M, Drummond D, Sullivan J, Elliman R, Kluth P, Kirby N, Riley D and Corr C S 2018 Nucl. Fusion 58 066010 [20] Getto E, Jiao Z, Monterrosa A M, Sun K and Was G S 2015 J. Nucl. Mater. 462 458 [21] Ayanoglu M and Motta A T 2018 J. Nucl. Mater. 510 297 [22] Sun F, Nakata M, Lee S E, Zhao M, Wada T, Yamazaki S, Koike A, Kondo S, Hinoki T, Hara M and Oya Y 2020 J. Nucl. Mater. 533 152122 [23] El-Atwani O, Cunningham W S, Trelewicz J R, Li M, Wirth B D and Maloy S A 2020 J. Nucl. Mater. 538 152150 [24] Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A E 2014 J. Phys. D-Appl. Phys. 47 224018 [25] Valles G, Cazalilla A L, Gonzalez C, Martin-Bragado I, Prada A, Iglesias R, Perlado J M and Rivera A 2015 Nucl. Instrum. Meth. B 352 100 [26] Derlet P M, Nguyen-Manh D and Dudarev S L 2007 Phys. Rev. B 76 054107 [27] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 115010 [28] You Y W, Li D D, Kong X S, Wu X B, Liu C S, Fang Q F, Pan B C, Chen J L and Luo G N 2014 Nucl. Fusion 54 103007 [29] Boisse J, Domain C and Becquart C S 2014 J. Nucl. Mater. 455 10 [30] Zhou H B, Wang J L, Jiang W, Lu G H, Aguiar J A and Liu F 2016 Acta Mater. 119 1 [31] Bakaev A, Grigorev P, Terentyev D, Bakaeva A, Zhurkin E E and Mastrikov Y A 2017 Nucl. Fusion 57 126040 [32] You Y W, Sun J J, Wu X B, Xu Y C, Zhang T, Hao T, Fang Q F and Liu C S 2019 Nucl. Fusion 59 026002 [33] You Y W, Sun J J, Kong X S, Wu X B, Xu Y C, Wang X P, Fang Q F and Liu C S 2020 Phys. Scripta 95 075708 [34] Ma F F, Hou P W, Li Z Z, Li Y H, Niu Y Z, Ma H Z, Ren Q Y, Gao F, Lu G H and Zhou H B, to be published [35] Sandoval L, Perez D, Uberuaga B P and Voter A F 2015 Phys. Rev. Lett. 114 105502 [36] Gao E and Ghoniem N M 2018 J. Nucl. Mater. 509 577 [37] Valles G, Gonzalez C, Martin-Bragado I, Iglesias R, Perlado J M and Rivera A 2015 J. Nucl. Mater. 457 80 [38] Wang J, Dang W, Liu D and Guo Z 2020 Chin. Phys. B 29 093101 [39] Li F B, Ran G, Gao N, Zhao S Q and Li N 2019 Chin. Phys. B 28 085203 [40] Li Z Z, Li Y H, Ren Q Y, Ma F F, Yue F Y, Zhou H B and Lu G H 2020 Materials 13 3375 [41] Li Z Z, Li Y H, Terentyev D, Castin N, Bakaev A, Bonny G, Yang Z C, Gao F, Lu G H and Zhou H B, to be published [42] Huang G Y, Juslin N and Wirth B D 2016 Comp. Mater. Sci. 123 121 [43] Becquart C S, Domain C, Sarkar U, DeBacker A and Hou M 2010 J. Nucl. Mater. 403 75 [44] Li X C, Liu Y N, Yu Y, Luo G N, Shu X L and Lu G H 2014 J. Nucl. Mater. 451 356 [45] Christiaen B, Domain C, Thuinet L, Ambard A and Legris A 2020 Acta Mater. 195 631 [46] Panizo-Laiz M, Diaz-Rodriguez P, Rivera A, Valles G, Martin-Bragado I, Perlado J M, Munnik F and Gonzalez-Arrabal R 2019 Nucl. Fusion 59 086055 [47] Martin-Bragado I, Rivera A, Valles G, Gomez-Selles J L and Caturla M J 2013 Comput. Phys. Commun. 184 2703 [48] Valles G, Panizo-Laiz M, Gonzalez C, Martin-Bragado I, Gonzalez-Arrabal R, Gordillo N, Iglesias R, Guerrero C L, Perlado J M and Rivera A 2017 Acta Mater. 122 277 [49] Becquart C S, Barthe M F and De Backer A 2011 Phys. Scripta T145 014048 [50] Malerba L, Becquart C S and Domain C 2007 J. Nucl. Mater. 360 159 [51] Castin N, Bakaev A, Bonny G, Sand A E, Malerba L and Terentyev D 2017 J. Nucl. Mater. 493 280 [52] Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia C, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A, Force E P T, Team I P, Energy F and DIV I S 2009 J. Nucl. Mater. 390-391 1 [53] Alimov V K, Tyburska-Püschel B, Lindig S, Hatano Y, Balden M, Roth J, Isobe K, Matsuyama M and Yamanishi T 2012 J. Nucl. Mater. 420 519 [54] Gilbert M R and Sublet J C 2011 Nucl. Fusion. 51 043005 [55] Matolich J, Nahm H and Moteff J 1974 Scripta Metallurgica 8 837 [56] Zhang X X, Yan Q Z, Yang C T, Wang T N, Xia M and Ge C C 2016 Rare Metals 35 566 [57] Fikar J and Schaeublin R 2007 Nucl. Instrum. Meth. B. 255 27 [58] You Y W, Kong X S, Wu X B, Liu C S, Chen J L and Luo G N 2017 Nucl. Fusion 57 016006 [59] Heinola K, Djurabekova F and Ahlgren T 2018 Nucl. Fusion 58 026004 [60] Gonzalez C and Iglesias R 2014 J. Mater. Sci. 49 8127 [61] https://cascadesdb.org/ [62] Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Des. 33 50 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|