Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086108    DOI: 10.1088/1674-1056/abf7ac
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation

Peng-Wei Hou(侯鹏伟)1,2, Yu-Hao Li(李宇浩)1,2,†, Zhong-Zhu Li(李中柱)1,2, Li-Fang Wang(王丽芳)3, Xingyu Gao(高兴誉)3, Hong-Bo Zhou(周洪波)1,2,‡, Haifeng Song(宋海峰)3, and Guang-Hong Lu(吕广宏)1,2
1 Department of Physics, Beihang University, Beijing 100191, China;
2 Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China;
3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation. Hereby, we systematically investigate the influence of He on the evolution of Frenkel pairs and collision cascades in tungsten (W) via using the object kinetic Monte Carlo (OKMC) method. Our findings suggest that the presence of He has significant effect on the evolution of irradiation-induced defects. On the one hand, the presence of He can facilitate the recombination of vacancies and self-interstitial atoms (SIAs) in W. This can be attributed to the formation of immobile He-SIA complexes, which increases the annihilation probability of vacancies and SIAs. On the other hand, due to the high stability and low mobility of He-vacancy complexes, the growth of large vacancy clusters in W is kinetically suppressed by He addition. Specially, in comparison with the injection of collision cascades and He in sequential way at 1223 K, the average sizes of surviving vacancy clusters in W via simultaneous way are smaller, which is in good agreement with previous experimental observations. These results advocate that the impurity with low concentration has significant effect on the evolution of irradiation-induced defects in materials, and contributes to our understanding of W performance under irradiation.
Keywords:  tungsten      helium      irradiation-induced defects      object kinetic Monte Carlo  
Received:  05 March 2021      Revised:  12 April 2021      Accepted manuscript online:  14 April 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018002), the National Natural Science Foundation of China (Grant No. 11905135), and the National MCF Energy R&D Program of China (Grant No. 2018YFE0308103).
Corresponding Authors:  Yu-Hao Li, Hong-Bo Zhou     E-mail:  yuhaoli@buaa.edu.cn;hbzhou@buaa.edu.cn

Cite this article: 

Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏) Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation 2021 Chin. Phys. B 30 086108

[1] Bloom E E, Zinkle S J and Wiffen F W 2004 J. Nucl. Mater. 329 12
[2] Zinkle S J 2005 Phys. Plasmas 12 058101
[3] Yin H, Wang J, Guo W G, Cheng L and Lu G H 2019 Tungsten 1 132
[4] Hu X X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D and Katoh Y 2016 J. Nucl. Mater. 480 235
[5] Li Y G, Zheng Q R, Wei L M, Zhang C G and Zeng Z 2020 Tungsten 2 34
[6] Hu X X, Koyanagi T, Fukuda M, Katoh Y, Snead L L and Wirth B D 2016 J. Nucl. Mater. 470 278
[7] Song Y Y P, Qiu W B, Chen L Q, Yang X L, Deng H, Liu C S, Zhang K and Tang J 2020 Chin. Phys. B 29 105202
[8] Hu L, Wirth B D and Maroudas D 2017 Appl. Phys. Lett. 111 081902
[9] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 025016
[10] El-Atwani O, Aydogan E, Esquivel E, Efe M, Wang Y Q and Maloy S A 2018 Acta Mater. 147 277
[11] Bonny G, Castin N, Bakaev A, Sand A E and Terentyev D 2020 Comp. Mater. Sci. 181 109727
[12] Sand A E, Nordlund K and Dudarev S L 2014 J. Nucl. Mater. 455 207
[13] Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X and Chen J M 2016 Chin. Phys. B 25 056102
[14] Katoh Y, Snead L L, Garrison L M, Hu X, Koyanagi T, Parish C M, Edmondson P D, Fukuda M, Hwang T, Tanaka T and Hasegawa A 2019 J. Nucl. Mater. 520 193
[15] Abernethy R G 2017 Mater. Sci. Tech. 33 388
[16] Zinkle S J and Busby J T 2009 Mater. Today 12 12
[17] Zinkle S J and Was G S 2013 Acta Mater. 61 735
[18] Gilbert M R, Dudarev S L, Zheng S, Packer L W and Sublet J C 2012 Nucl. Fusion 52 083019
[19] Thompson M, Drummond D, Sullivan J, Elliman R, Kluth P, Kirby N, Riley D and Corr C S 2018 Nucl. Fusion 58 066010
[20] Getto E, Jiao Z, Monterrosa A M, Sun K and Was G S 2015 J. Nucl. Mater. 462 458
[21] Ayanoglu M and Motta A T 2018 J. Nucl. Mater. 510 297
[22] Sun F, Nakata M, Lee S E, Zhao M, Wada T, Yamazaki S, Koike A, Kondo S, Hinoki T, Hara M and Oya Y 2020 J. Nucl. Mater. 533 152122
[23] El-Atwani O, Cunningham W S, Trelewicz J R, Li M, Wirth B D and Maloy S A 2020 J. Nucl. Mater. 538 152150
[24] Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A E 2014 J. Phys. D-Appl. Phys. 47 224018
[25] Valles G, Cazalilla A L, Gonzalez C, Martin-Bragado I, Prada A, Iglesias R, Perlado J M and Rivera A 2015 Nucl. Instrum. Meth. B 352 100
[26] Derlet P M, Nguyen-Manh D and Dudarev S L 2007 Phys. Rev. B 76 054107
[27] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 115010
[28] You Y W, Li D D, Kong X S, Wu X B, Liu C S, Fang Q F, Pan B C, Chen J L and Luo G N 2014 Nucl. Fusion 54 103007
[29] Boisse J, Domain C and Becquart C S 2014 J. Nucl. Mater. 455 10
[30] Zhou H B, Wang J L, Jiang W, Lu G H, Aguiar J A and Liu F 2016 Acta Mater. 119 1
[31] Bakaev A, Grigorev P, Terentyev D, Bakaeva A, Zhurkin E E and Mastrikov Y A 2017 Nucl. Fusion 57 126040
[32] You Y W, Sun J J, Wu X B, Xu Y C, Zhang T, Hao T, Fang Q F and Liu C S 2019 Nucl. Fusion 59 026002
[33] You Y W, Sun J J, Kong X S, Wu X B, Xu Y C, Wang X P, Fang Q F and Liu C S 2020 Phys. Scripta 95 075708
[34] Ma F F, Hou P W, Li Z Z, Li Y H, Niu Y Z, Ma H Z, Ren Q Y, Gao F, Lu G H and Zhou H B, to be published
[35] Sandoval L, Perez D, Uberuaga B P and Voter A F 2015 Phys. Rev. Lett. 114 105502
[36] Gao E and Ghoniem N M 2018 J. Nucl. Mater. 509 577
[37] Valles G, Gonzalez C, Martin-Bragado I, Iglesias R, Perlado J M and Rivera A 2015 J. Nucl. Mater. 457 80
[38] Wang J, Dang W, Liu D and Guo Z 2020 Chin. Phys. B 29 093101
[39] Li F B, Ran G, Gao N, Zhao S Q and Li N 2019 Chin. Phys. B 28 085203
[40] Li Z Z, Li Y H, Ren Q Y, Ma F F, Yue F Y, Zhou H B and Lu G H 2020 Materials 13 3375
[41] Li Z Z, Li Y H, Terentyev D, Castin N, Bakaev A, Bonny G, Yang Z C, Gao F, Lu G H and Zhou H B, to be published
[42] Huang G Y, Juslin N and Wirth B D 2016 Comp. Mater. Sci. 123 121
[43] Becquart C S, Domain C, Sarkar U, DeBacker A and Hou M 2010 J. Nucl. Mater. 403 75
[44] Li X C, Liu Y N, Yu Y, Luo G N, Shu X L and Lu G H 2014 J. Nucl. Mater. 451 356
[45] Christiaen B, Domain C, Thuinet L, Ambard A and Legris A 2020 Acta Mater. 195 631
[46] Panizo-Laiz M, Diaz-Rodriguez P, Rivera A, Valles G, Martin-Bragado I, Perlado J M, Munnik F and Gonzalez-Arrabal R 2019 Nucl. Fusion 59 086055
[47] Martin-Bragado I, Rivera A, Valles G, Gomez-Selles J L and Caturla M J 2013 Comput. Phys. Commun. 184 2703
[48] Valles G, Panizo-Laiz M, Gonzalez C, Martin-Bragado I, Gonzalez-Arrabal R, Gordillo N, Iglesias R, Guerrero C L, Perlado J M and Rivera A 2017 Acta Mater. 122 277
[49] Becquart C S, Barthe M F and De Backer A 2011 Phys. Scripta T145 014048
[50] Malerba L, Becquart C S and Domain C 2007 J. Nucl. Mater. 360 159
[51] Castin N, Bakaev A, Bonny G, Sand A E, Malerba L and Terentyev D 2017 J. Nucl. Mater. 493 280
[52] Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia C, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A, Force E P T, Team I P, Energy F and DIV I S 2009 J. Nucl. Mater. 390-391 1
[53] Alimov V K, Tyburska-Püschel B, Lindig S, Hatano Y, Balden M, Roth J, Isobe K, Matsuyama M and Yamanishi T 2012 J. Nucl. Mater. 420 519
[54] Gilbert M R and Sublet J C 2011 Nucl. Fusion. 51 043005
[55] Matolich J, Nahm H and Moteff J 1974 Scripta Metallurgica 8 837
[56] Zhang X X, Yan Q Z, Yang C T, Wang T N, Xia M and Ge C C 2016 Rare Metals 35 566
[57] Fikar J and Schaeublin R 2007 Nucl. Instrum. Meth. B. 255 27
[58] You Y W, Kong X S, Wu X B, Liu C S, Chen J L and Luo G N 2017 Nucl. Fusion 57 016006
[59] Heinola K, Djurabekova F and Ahlgren T 2018 Nucl. Fusion 58 026004
[60] Gonzalez C and Iglesias R 2014 J. Mater. Sci. 49 8127
[61] https://cascadesdb.org/
[62] Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Des. 33 50
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[4] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[5] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[6] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[7] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[8] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[9] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[10] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[11] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[12] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[13] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[14] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[15] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
No Suggested Reading articles found!