Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070308    DOI: 10.1088/1674-1056/ac01c3
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Universal quantum control based on parametric modulation in superconducting circuits

Dan-Yu Li(李丹宇)1, Ji Chu(储继)2, Wen Zheng(郑文)1, Dong Lan(兰栋)1, Jie Zhao(赵杰)1, Shao-Xiong Li(李邵雄)1,†, Xin-Sheng Tan(谭新生)1,‡, and Yang Yu(于扬)1
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  As superconducting quantum circuits are scaling up rapidly towards the noisy intermediate-scale quantum (NISQ) era, the demand for electronic control equipment has increased significantly. To fully control a quantum chip of N qubits, the common method based on up-conversion technology costs at least 2×N digital-to-analog converters (DACs) and N IQ mixers. The expenses and complicate mixer calibration have become a hinderance for intermediate-scale quantum control. Here we propose a universal control scheme for superconducting circuits, fully based on parametric modulation. To control N qubits on a chip, our scheme only requires N DACs and no IQ mixer, which significantly reduces the expenses. One key idea in the control scheme is to introduce a global pump signal for single-qubit gates. We theoretically explain how the universal gates are constructed using parametric modulation. The fidelity analysis shows that parametric single-qubit (two-qubit) gates in the proposed scheme can achieve low error rates of 10-4, with a gate time of about 60 ns (100 ns).
Keywords:  superconducting qubits      parametric modulation      single-qubit gate      iSWAP gate  
Received:  25 February 2021      Revised:  30 April 2021      Accepted manuscript online:  16 May 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301802), the National Natural Science Foundation of China (Grant Nos. 11474152, 12074179, and 61521001), and the Young Fund of Jiangsu Natural Science Foundation of China (Grant No. BK20180750).
Corresponding Authors:  Shao-Xiong Li, Xin-Sheng Tan     E-mail:  shaoxiong.li@nju.edu.cn;tanxs@nju.edu.cn

Cite this article: 

Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬) Universal quantum control based on parametric modulation in superconducting circuits 2021 Chin. Phys. B 30 070308

[1] Arute F, Arya K, Babbush R, Bacon D, et al. 2019 Nature 574 505
[2] You J and Nori F 2011 Nature 474 589
[3] Jurcevic P, Javadi-Abhari A, Bishop L S, et al. 2020 arXiv preprint arXiv: 2008.08571
[4] Song C, Xu K, Liu W, et al. 2017 Phys. Rev. Lett. 119 180511
[5] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401
[6] Preskill J 2018 Quantum 2 79
[7] Li M, Tan X, Dai K, Zhao P, Yu H and Yu Y 2018 Chin. Phys. B 27 063202
[8] Gong M, Wang S, Zha C, et al. 2021 arXiv preprint arXiv: 2102.02573
[9] Xu H, Liu W, Li Z, et al. 2021 Chin. Phys. B 30 044212
[10] Raftery J, Vrajitoarea A, Zhang G, Leng Z, Srinivasan S and Houck A 2017 arXiv preprint arXiv: 1703.00942
[11] Li Z Y, Yu H F, Tan X S, Zhao S P and Yu Y 2019 Chin. Phys. B 28 098505
[12] Jolin S, Borgani R, Tholén M, Forchheimer D and Haviland D 2020 arXiv preprint arXiv: 2008.07265
[13] Kalfus W D, Lee D F, Ribeill G J, Fallek S D, Wagner A, Donovan B, Ristè D and Ohki T A 2020 arXiv preprint arXiv: 2008.02873
[14] Xu Y, Huang G, Santiago D I and Siddiqi I 2020 arXiv preprint arXiv: 2101.00066
[15] Caldwell S, Didier N, Ryan C, et al. 2018 Phys. Rev. Appl. 10 034050
[16] Didier N, Sete E A, da Silva M P and Rigetti C 2018 Phys. Rev. A 97 022330
[17] Silveri M, Tuorila J, Thuneberg E and Paraoanu G 2017 Rep. Prog. Phys. 80 056002
[18] Reagor M, Osborn C B, Tezak N, et al. 2018 Sci. Adv. 4 eaao3603
[19] Li X, Ma Y, Han J, Chen T, et al. 2018 Phys. Rev. Appl. 10 054009
[20] Chu J, Li D, Yang X, et al. 2020 Phys. Rev. Appl. 13 064012
[21] Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[22] McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. Appl. 6 064007
[23] Chow J M, Córcoles A, Gambetta J M, et al. 2011 Phys. Rev. Lett. 107 080502
[24] Rigetti C and Devoret M 2010 Phys. Rev. B 81 134507
[25] Sheldon S, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. A 93 060302
[26] Krinner S, Kurpiers P, Royer B, Magnard P, Tsitsilin I, Besse J C, Remm A, Blais A and Wallraff A 2020 Phys. Rev. Appl. 14 044039
[27] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
[28] Xu Y, Chu J, Yuan J, et al. 2020 arXiv preprint arXiv: 2006.11860
[29] McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Phys. Rev. A 96 022330
[30] Johnson B R, da Silva M P, Ryan C A, Kimmel S, Chow J M and Ohki T A 2015 New J. Phys. 17 113019
[31] Schuster D, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602
[32] Motzoi F, Gambetta J M, Rebentrost P and Wilhelm F K 2009 Phys. Rev. Lett. 103 110501
[33] Yan F, Gustavsson S, Kamal A, et al. 2016 Nat. Commun. 7 12964
[34] You J, Hu X, Ashhab S and Nori F 2007 Phys. Rev. B 75 140515
[35] Xu X and Ansari M 2020 arXiv preprint arXiv: 2009.00485
[36] Xu H, Song C, Liu W, et al. 2016 Nat. Commun. 7 11018
[37] Sung Y, Ding L, Braumüller J, et al. 2020 arXiv preprint arXiv: 2011.01261
[38] Zhao P, Xu P, Lan D, Chu J, Tan X, Yu H and Yu Y 2020 Phys. Rev. Lett. 125 200503
[39] Zhao P, Lan D, Xu P, Xue G, Blank M, Tan X, Yu H and Yu Y 2020 arXiv preprint arXiv: 2011.03976
[1] Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(9): 090301.
[2] Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants
Lin Yu(于琳), Jing Xu(徐晶), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(6): 060306.
[3] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
[4] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[5] Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity
Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田). Chin. Phys. B, 2014, 23(2): 020311.
[6] Generating genuine multipartite entanglement via XY-interactionand via projective measurements
Mazhar Ali. Chin. Phys. B, 2014, 23(12): 120307.
No Suggested Reading articles found!