|
|
Creation and annihilation phenomena of electron and positron pairs in an oscillating field |
M Jiang(江淼)1,2, D D Su(苏丹丹)3, N S Lin(林南省)1,2, and Y J Li(李英骏)1,2,† |
1 School of Science, China University of Mining and Technology, Beijing 100083, China; 2 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The combination of an oscillating and a static field is used to study the creation and annihilation phenomena during the pair creation process. The time evolution, spatial density and momentum distribution of the created particles for a fermionic system are presented, which demonstrate that with the increasing static field intensity, the number of the created particles experiences a distinguishable decrease in every period of the oscillating field, which is caused by the annihilation phenomena between the created electrons and positrons.
|
Received: 26 November 2020
Revised: 24 January 2021
Accepted manuscript online: 05 February 2021
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
12.20.Ds
|
(Specific calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974419 and 11605286), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25051000), and the National Key R&D Program of China (Grant No. 2018YFA0404802). |
Corresponding Authors:
Y J Li
E-mail: lyj@aphy.iphy.ac.cn
|
Cite this article:
M Jiang(江淼), D D Su(苏丹丹), N S Lin(林南省), and Y J Li(李英骏) Creation and annihilation phenomena of electron and positron pairs in an oscillating field 2021 Chin. Phys. B 30 070306
|
[1] Schwinger J 1951 Phys. Rev. 82 664 [2] Narozhny N B, Bulanov S S, Mur V D and Popov V S 2004 JETP Lett. 80 382 [3] Di Piazza A 2004 Phys. Rev. D 70 053013 [4] Müller C, Hatsagortsyan K Z and Keitel C H 2008 Phys. Rev. A 78 033408 [5] Ruf M, Mocken G R, Müller C, Hatsagortsyan K Z and Keitel C H 2009 Phys. Rev. Lett. 102 080402 [6] Kirk J G, Bell A R and Arka I 2009 Plasma Phys. Control. Fusion 51 085008 [7] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106 [8] Sang H B, Jiang M and Xie B S 2013 Chin. Phys. Lett. 30 111201 [9] Li Z L, Sang H B and Xie B S 2013 Chin. Phys. Lett. 30 071201 [10] Liu Y, Lv Q Z, Li Y T, Grobe R and Su Q 2015 Phys. Rev. A 91 052123 [11] Piccinelli G and Sánchez A 2017 Phys. Rev. D 96 076014 [12] Li Z L, Xie B S and Li Y J 2019 Phys. Rev. D 100 076018 [13] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 92 040406 [14] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R and Su Q 2011 Phys. Rev. A 83 053402 [15] Wöllert A, Klaiber M, Bauke H and Keitel C H 2015 Phys. Rev. D 91 065022 [16] Schützhold R, Gies H and Dunne G 2008 Phys. Rev. Lett. 101 130404 [17] Monin A and Voloshin M B 2010 Phys. Rev. D 81 085014 [18] Dong S, Unger J, Bryan J, Su Q and Grobe R 2020 Phys. Rev. E 101 013310 [19] Krekora P, Cooley K, Su Q and Grobe R 2005 Phys. Rev. Lett. 95 070403 [20] Jiang M, Lv Q Z, Sheng Z M, Grobe R and Su Q 2013 Phys. Rev. A 87 042503 [21] Lv Q Z, Liu Y, Li Y J, Grobe R and Su Q 2014 Phys. Rev. A 90 013405 [22] Wang Q, Liu J and Fu L b 2016 Sci. Rep. 6 25292 [23] Wang Q, Xia Q Z, Liu J and Fu L B 2018 Chin. Phys. B 27 080302 [24] Su D D, Li Y T, Lv Q Z and Zhang J 2020 Phys. Rev. D 101 054501 [25] Jiang M, Su W, Lv Z Q, Lu X, Li Y J, Grobe R and Su Q 2012 Phys. Rev. A 85 033408 [26] Schneider C and Schützhold R 2016 J. High Energy Phys. 2016 164 [27] Aleksandrov I A, Plunien G and Shabaev V M 2018 Phys. Rev. D 97 116001 [28] Braun J W, Su Q and Grobe R 1999 Phys. Rev. A 59 604 [29] Wagner R E, Ware M R, Shields B T, Su Q and Grobe R 2011 Phys. Rev. Lett. 106 023601 [30] Bandrauk A D and Shen H 1994 J. Phys. A Math. Gen. 27 7147 [31] Mocken G R and Keitel C H 2008 Comput. Phys. Commun. 178 868 [32] Sauter F 1932 Zeitschrift für Physik 73 547 [33] Lin N S, Han L X, Jiang M and Li Y J 2018 Acta Phys. Sin. 67 133401 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|