Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074207    DOI: 10.1088/1674-1056/26/7/074207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system

Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅)
Key Laboratory of Coherent Light, Atomic and Molecular Spectroscopy(Ministry of Education);and College of Physics, Jilin University, Changchun 130012, China
Abstract  We present a theoretical study of an optical cavity coupled with single four-level atoms in closed loop formed via applied control lasers.The transmitted probe field from the cavity is analyzed.We show that the electromagnetically induced transparency (EIT) in the cavity and the normal mode splitting will be very different with changing the closed interaction phase and the intensity of the free-space control laser.This coupled cavity–atom system presents a variational double-EIT that comes from modulating the splitting of the dark state,which means that we could realize the gradual transfer between one EIT peak and two EIT peaks by adjusting the applied control lasers,and the normal mode splitting sidebands will shift slightly by changing the free-space control laser.This means that we could control the output cavity probe field more freely and it is easer to realize optical switch controlled by more parameters.We also depict the angular dispersion of the intracavity probe field in different free-space control laser.The large phase shift (–ππ) of the reflected intracavity probe field will be very useful for optical temporal differentiation and quantum phase gate.
Keywords:  cavity quantum electrodynamics      double electromagnetically induced transparency      all optical switch      cross phase modulation  
Received:  14 February 2017      Revised:  23 March 2017      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.-p (Quantum optics)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11174109).
Corresponding Authors:  Xue-Mei Su     E-mail:  suxm@jlu.edu.cn

Cite this article: 

Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅) Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system 2017 Chin. Phys. B 26 074207

[1] Haroche S and Kleppner D 1989 Physics Today 42 0124
[2] Eberly J H, Narozhny N B and Sanchez-Mondragon J J 1980 Phys. Rev. Lett. 44 1323
[3] Zou H M and Fang M F 2016 Chin. Phys. B 25 070305
[4] Marbuger J H and Fellber F S 1978 Phys. Rev. A 17 335
[5] Nihira H and Stroud C R Jr 2009 Phys. Rev. A 80 042329
[6] Tuchman A K, Long R, Vrijsen G, Boudet J, Lee J and Kasevich M A 2006 Phys. Rev. A 74 053821
[7] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[8] Xue Y L, Zhang K, Feng B H and Li Z Y 2016 Chin. Phys. Lett. 33 074204
[9] Hai L, Tan L, Feng J S, Xu W B and Wang B 2014 Chin. Phys. B 23 024202
[10] Lukin M D, Fleischhauer M, Scully M O and Velichansky V L 1998 Opt. Lett. 23 295
[11] Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nature 465 755
[12] Wang H, Goorskey D J, Burkett W H and Xiao M 2000 Opt. Lett. 25 1732
[13] Wu H B, Gea-Banacloche J and Xiao M 2008 Phys. Rev. Lett. 100 173602
[14] Cheng Y, Tan Z, Wang J, Zhu Y F and Zhan M S 2016 Chin. Phys. Lett. 33 014202
[15] Wang Y H, Zhang J P and Zhu Y F 2012 Phys. Rev. A 85 013814
[16] Sawant R and Rangwala S A 2016 Phys. Rev. A 93 023806
[17] Wei X G, Zhang J P and Zhu Y F 2010 Phys. Rev. A 82 033808
[18] Nielsen A E B and Kerckhoff J 2011 Phys. Rev. A 84 043821
[19] Xu J P, Al-Amri M, Yang Y P, Zhu S Y and Zubairy M S 2012 Phys. Rev. A 86 033828
[20] Zou B C, Tan Z, Musa M and Zhu Y F 2014 Phys. Rev. A 89 023806
[21] Peng Y D, Niu Y P, Yang A H, Li D H, Liang M and Gong S Q 2014 Opt. Commun. 313 416
[22] Zhang X, Li R and Wu H B 2016 Nature 6 22560
[23] Li N, Xu J P, Song G, Zhu C J, Xie S Y, Yang Y P, Zubairy M S and Zhu S Y 2016 Phys. Rev. A 93 043819
[24] Zubairy M S, Kim M and Scully M O 2003 Phys. Rev. A 68 033820
[25] Chen C Y, Feng M and Gao K L 2006 Phys. Rev. A 73 064304
[26] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
[27] Tang S Q, Zhang D Y, Wang X W, Xie L J and Gao F 2011 Chin. Phys. B 20 040308
[28] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[29] Walls D F and Milburn G J 2007 Quantum Optics (Berlin:Springer) pp. 127–133
[30] Xue Y, Wang G, Wu J H, Xu W H, Wang H H, Gao J Y and Babin S A 2004 Phys. Lett. A 324 388
[31] Zou B C and Zhu Y F 2013 Phys. Rev. A 87 053802
[32] Berger N K, Levit B, Fischer B, Kulishov M, Plant D V and Azaña J 2007 Opt. Express 15 371
[1] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[2] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[5] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[6] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[7] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[8] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[9] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
[10] Quantum discord dynamics of two qubits in the single-mode cavities
Wang Chen (王晨), Chen Qing-Hu (陈庆虎). Chin. Phys. B, 2013, 22(4): 040304.
[11] Interaction of pair coherent state with a three-level Λ-type atom and generation of a modified Bessel-Gaussian state with a vortex structure
Tang Hui-Qin (唐慧琴), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Zhu Kai-Cheng (朱开成). Chin. Phys. B, 2013, 22(2): 020310.
[12] Nonlocal quantum cloning via quantum dots trapped in distant cavities
Yu Tao(于涛), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(5): 050304.
[13] Efficient scheme for entangled states and quantum information transfer with trapped atoms in a resonator
Li Peng-Bo(李蓬勃) and Li Fu-Li(李福利) . Chin. Phys. B, 2011, 20(9): 090304.
[14] Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics
Tang Jing-Wu (唐京武), Zhao Guan-Xiang (赵冠湘), He Xiong-Hui (何雄辉). Chin. Phys. B, 2011, 20(5): 050312.
[15] One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics
Ma Song-She(马宋设), Chen Mei-Feng(陈美锋), and Jiang Xia-Ping(蒋夏萍) . Chin. Phys. B, 2011, 20(12): 120308.
No Suggested Reading articles found!