Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084208    DOI: 10.1088/1674-1056/ac0694
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A 37 mJ, 100 Hz, high energy single frequency oscillator

Yu Shen(申玉)1,2,†, Yong Bo(薄勇)1,2, Nan Zong(宗楠)1,2, Shenjin Zhang(张申金)1,2,‡, Qinjun Peng(彭钦军)1,2, and Zuyan Xu(许祖彦)1,2
1 Research Center for Laser Physics and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Solid State Laser, Key Laboratory of Function Crystal and Laser Technology, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Ways on energy enhancement for single frequency oscillator are reported in this paper. By quantitative analysis on gain and loss coefficients for each cavity mode with inserted etalons, a 37 mJ, 100 Hz high energy single-frequency Nd:YAG oscillator is obtained. The pulse energy is promoted by enhancement of nearly 7 times for a single frequency oscillator reported. The result proves that this method does help for energy enhancement. It has attractive potential for high energy single frequency oscillator design, especially on condition of intensive side pumped or long cavity laser, where strong competitors exist and are hard to be suppressed.
Keywords:  Nd:YAG laser      high pulse energy      single frequency oscillator  
Received:  02 May 2021      Revised:  27 May 2021      Accepted manuscript online:  29 May 2021
PACS:  42.55.-f (Lasers)  
  42.60.-v (Laser optical systems: design and operation)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504389) and the Funds of Key Lab of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences.
Corresponding Authors:  Yu Shen, Shenjin Zhang     E-mail:  shenyu@mail.ipc.ac.cn;zhangshenjin@mail.ipc.ac.cn

Cite this article: 

Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦) A 37 mJ, 100 Hz, high energy single frequency oscillator 2021 Chin. Phys. B 30 084208

[1] Ding Y Q, Qi Y F, Liu C, He J and Zhou J 2011 International Symposium on Photoelectronic Detection and Imaging, 19 August 2011, Beijing, China, 819220
[2] Redmond S, McNaught S, Zamel J, Iwaki L, Bammert S, Simpson R, Weiss S B, Szot J, Flegal B, Lee T, Komine H, Injeyan H and Ieee 2007 Conference on Lasers and Electro-Optics, 6-11 May 2007, Baltimore, Maryland United States, 2160
[3] Frank H K S, TObias M, Gerd M, Thomas S, Robert L, and Berry S 2004 Proceedings of the 5th International Conference on Space Optics (ICSO 2004), 30 March-2 April 2004, Toulouse, France, 599
[4] Basu C, Wessels P, Neumann J and Kracht D 2012 Opt. Lett. 37 2862
[5] Hovis F E, Edelman J, Schum T, Rudd J and Andes K 2008 Recent progress on single frequency lasers for space and high altitude aircraft applications, 14 February 2008, Bellingham E8710
[6] Peshko I I, Khiznyak A B, Dlugaszek A and Jabczynski J K 1996 Tunable single-frequency diode-pumped Nd:crystal lasers for Doppler radar application, 13 February 1996, Warsaw, Poland, 2729/31
[7] Dai S T, Jiang T, Wu L X, Wu H C and Lin W X 2019 Acta. Phys. Sin. 68 134202 (in Chinese)
[8] Shen D, Ding L, Zhang Q, Zhu C, Wang Y, Zhang W and Zhang X 2020 Chin. Phys. B 29 ab8c41
[9] Aleksoff C C 1997 Opt. Lett. 1 54
[10] Ustinov N, Anufriev A, Vol'Pov A, Zimin I and Tolmachev A 1987 Soy. Quantum Electron 17 108
[11] Sica L 1992 App. Opt. 31 120
[12] Prasad N, Singh U, Hovis F and Armstrong D 2006 Proceedings of SPIE - The International Society for Optical Engineering, 19 May 2006, Orlando (Kissimmee), Florida, United States, 27
[13] Cuellar E L, Stapp J and Cooper J 2005 Laboratory and field experimental demonstration of a Fourier telescopy imaging system, 23 August 2005, San Diego, California, United States, 58960D
[14] Mathis J, Stapp J, Cuellar E L, Cooper J, Morris A, Fairchild P, Hult D, Koski K, Ramzel L and Thornton M A 2005 Optics and Photonics 2005, 30 August 2005, San Diego, California, United States, 58960F
[15] Olsen R C 2007 Remote sensing from air and space (Bellingham, Washington: SPIE) 314
[16] Cuellar E L, Cooper J, Mathis J and Fairchild P 2008 Laboratory demonstration of a multiple beam Fourier telescopy imaging system, 26 August 2008, San Diego, California, United States, 70940G
[17] Spivey B, Stapp J and Sandler D 2006 Phase closure and object reconstruction algorithm for Fourier telescopy applied to fast-moving targets, 8 September 2006 San Diego, California, United States, 630702
[18] Stapp J, Spivey B, Chen L, Leon L, Hughes K, Sandler D and Cuellar E L 2006 Simulation of a Fourier telescopy imaging system for objects in low Earth orbit, 7 September 2006, San Diego, California, United States, 630701
[19] Danielmeyer H G 1970 IEEE J. Quantum Electon. 6 101
[20] Agger S, Povlsen J and Varming P 2004 Opt. Lett. 29 1503
[21] Lindberg H, Larsson A and Strassner M 2005 Opt. Lett. 30 2260
[22] Shen D Y, Tam S C, Lam Y L and Kobayashi T 2000 Opt. Rev. 7 451
[23] Wang Y, Huang L, Gong M, Zhang H, Lei M and He F 2007 Laser Phys. Lett. 4 580
[24] Mooradian J J Z A A 1989 Opt. Lett. 14 24
[25] Koch G J, Deyst J P and Storm M E 1993 Opt. Lett. 18 1235
[26] Wu K Y, Yang S H and Wei G H 2002 Opt. Commun. 203 323
[27] Kane T J and Byer R L 1985 Opt. Lett. 10 65
[28] Bode M, Freitag I, Tünnermann A and Welling H 1997 Opt. Lett. 22 1220
[29] Vance J D, She C Y and Moosmüller H 1998 Appl. Opt. 37 4891
[30] Liem A, Limpert J, Zellmer H and Tünnermann A 2003 Opt. Lett. 28 1537
[31] Kumar S C, Samanta G K, Devi K, Sanguinetti S and Ebrahim Z M 2012 Appl. Opt. 51 15
[32] Clobes A R and Brienza M J 1972 Appl. Phys. Lett. 21 265
[33] Dergachev A 2011 Opt. Express 19 6797
[34] Johnston J T F, Brady R H and Proffitt W 1982 Appl. Opt. 21 2307
[35] Jarrett S M and Young J F 1979 Opt. Lett. 4 176
[36] Li M, Zhao W, Hou W, Zhang S, Guo L, Lin X and Li J 2012 Appl. Phys. B 106 593
[37] Li M L, Zhao W F, Hou W, Xiong B, Zhang S B, Lin X C and Li J M 2011 Laser Phys. 21 1738
[38] Martin K I, Clarkson W A and Hanna D C 1996 Opt. Lett. 21 875
[39] Li M L, Zhao W F, Zhang S B, Guo L, Hou W, Li J M and Lin X C 2012 Appl. Opt. 51 1241
[40] Cheng Y, Kringlebotn J T, Loh W H, Laming R I and Payne D N 1995 Opt. Lett. 20 875
[41] Milovskii N V, Markelov N A and Il'in V A 1993 Laser Phys. 3 821
[42] Rantamaki A, Rautiainen J, Sirbu A, Mereuta A, Kapon E and Okhotnikov O G 2013 Opt. Express 21 2355
[43] Zeng X, Zhang M, Cao D, Sun D and Zhou H 2020 Chin. Phys. B 29 064206
[44] Shuai L, Ya D G, Zhong Z C, Lin Z, Ke L G, Zhi F Z, Bao S W, Jian X, Yi T X, Lei Y, Yang K, Yang L, Yan Y L, Qin J P and Zu Y X 2019 Chin. Phys. Lett. 36 044204
[45] Teng S, Jian G X and Yu C S 2019 Chin. Phys. Lett. 36 034201
[46] Xue Z C, Pei L L, Zai Y W and Qiang L 2019 Chin. Phys. Lett. 36 124201
[47] Urata Y, Kudo A, Wada S, Imai K and Ito 2003 Quasi-CW laser diode pumped master-oscillator power-amplifier system in single frequency operation, 22-27 June 2003, Munich, Germany, 77
[48] Tong L, Zhao Z, Cui L, Liu C, Chen J, Gao Q and Tang C 2011 Laser Phys. 21 52
[49] Ma X, Wang J, Zhou J, Zhu X and Chen W 2011 Appl. Phys. B 103 809
[50] Schröder T, Lemmerz C, Reitebuch O, Wirth M, Wührer C and Treichel R 2007 Appl. Phys. B 87 437
[51] Goodno G, Komine H, McNaught S, Redmond S, William, Long, Simpson R, Cheung E, Howland D, Epp P, McGraw P, Weber M, McClellan M, Bell D, Serrano J, Sollee J, Injeyan H, Landers F and DaSilva H 2005 Multi-kW near-diffraction-limited single-frequency Nd:YAG laser. Lasers and Electro-Optics Europe, 12-17 June 2005, Munich, Germany, 25
[52] Xu X, Xie G, Lu Y, Zhang L and Wan M 2015 High Power Laser Science and Engineering 3 e24
[53] Baida L 2003 Laser Optics (Beijing: Higher Education Press) p. 235
[1] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[2] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[3] Experimental study of electro-optical Q-switched pulsed Nd:YAG laser
A Maleki, M Kavosh Tehrani, H Saghafifar, M H Moghtader Dindarlu. Chin. Phys. B, 2016, 25(3): 034206.
[4] Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
Hui Lan(兰慧), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗). Chin. Phys. B, 2016, 25(3): 035202.
[5] Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance
Seyed Ebrahim Pourmand, Ghasem Rezaei. Chin. Phys. B, 2015, 24(12): 124206.
[6] 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO
Wang Peng-Yuan (王鹏远), Xie Shi-Yong (谢仕永), Bo Yong (薄勇), Wang Bao-Shan (王保山), Zuo Jun-Wei (左军卫), Wang Zhi-Chao (王志超), Shen Yu (申玉), Zhang Feng-Feng (张丰丰), Wei Kai (魏凯), Jin Kai (晋凯), Xu Yi-Ting (徐一汀), Xu Jia-Lin (许家林), Peng Qin-Jun (彭钦军), Zhang Jing-Yuan (张景园), Lei Wen-Qiang (雷文强), Cui Da-Fu (崔大复), Zhang Yu-Dong (张雨东), Xu Zu-Yan (许祖彦). Chin. Phys. B, 2014, 23(9): 094208.
[7] Effects of temperature and input energy on quasi-three-level emission cross section of Nd3+:YAG pumped by flashlamp
Seyed Ebrahim Pourmand, Noriah Bidin, Hazri Bakhtiar. Chin. Phys. B, 2012, 21(9): 094214.
[8] Cutting of nonmetallic materials using Nd:YAG laser beam
Bashir Ahmed Tahir, Rashid Ahmed, M. G. B. Ashiq, Afaq Ahmed, and M. A. Saeed . Chin. Phys. B, 2012, 21(4): 044201.
[9] Surface second-harmonic generation based on periodically poled LiNbO3 nonlinear optical crystal
H. Nili-Ahmadabadi and A.R. Khorsandi. Chin. Phys. B, 2011, 20(5): 054205.
[10] Polarization switching in a quasi-isotropic microchip Nd:YAG laser induced by optical feedback
Ren Cheng(任成), Tan Yi-Dong(谈宜东), and Zhang Shu-Lian(张书练). Chin. Phys. B, 2010, 19(2): 024206.
[11] Simultaneous all-solid-state multi-wavelength lasers --- a promising pump source for generating highly coherent terahertz waves
Liu Huan(刘欢), Xu De-Gang(徐德刚), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2009, 18(3): 1077-1084.
[12] 1.15kW continuous-wave generation by diode-side-pumped two-rod Nd:YAG laser
Bo Yong (薄勇), Geng Ai-Cong (耿爱丛), Bi Yong (毕勇), Sun Zhi-Pei (孙志培), Yang Xiao-Dong (杨晓冬), Peng Qin-Jun (彭钦军), Li Hui-Qing (李惠青), Li Rui-Ning (李瑞宁), Cui Da-Fu (崔大复), Xu Zu-Yan (许祖彦). Chin. Phys. B, 2005, 14(4): 771-773.
[13] Oscillation conditions of cw simultaneous dual-wavelength Nd:YAG laser for transitions 4F3/2-4I9/2 and 4F3/2-4I11/2
Li Ping-Xue (李平雪), Li De-Hua (李德华), Li Chun-Yong (李春勇), Zhang Zhi-Guo (张治国). Chin. Phys. B, 2004, 13(10): 1689-1693.
No Suggested Reading articles found!