ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A 37 mJ, 100 Hz, high energy single frequency oscillator |
Yu Shen(申玉)1,2,†, Yong Bo(薄勇)1,2, Nan Zong(宗楠)1,2, Shenjin Zhang(张申金)1,2,‡, Qinjun Peng(彭钦军)1,2, and Zuyan Xu(许祖彦)1,2 |
1 Research Center for Laser Physics and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2 Key Laboratory of Solid State Laser, Key Laboratory of Function Crystal and Laser Technology, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Ways on energy enhancement for single frequency oscillator are reported in this paper. By quantitative analysis on gain and loss coefficients for each cavity mode with inserted etalons, a 37 mJ, 100 Hz high energy single-frequency Nd:YAG oscillator is obtained. The pulse energy is promoted by enhancement of nearly 7 times for a single frequency oscillator reported. The result proves that this method does help for energy enhancement. It has attractive potential for high energy single frequency oscillator design, especially on condition of intensive side pumped or long cavity laser, where strong competitors exist and are hard to be suppressed.
|
Received: 02 May 2021
Revised: 27 May 2021
Accepted manuscript online: 29 May 2021
|
PACS:
|
42.55.-f
|
(Lasers)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504389) and the Funds of Key Lab of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. |
Corresponding Authors:
Yu Shen, Shenjin Zhang
E-mail: shenyu@mail.ipc.ac.cn;zhangshenjin@mail.ipc.ac.cn
|
Cite this article:
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦) A 37 mJ, 100 Hz, high energy single frequency oscillator 2021 Chin. Phys. B 30 084208
|
[1] Ding Y Q, Qi Y F, Liu C, He J and Zhou J 2011 International Symposium on Photoelectronic Detection and Imaging, 19 August 2011, Beijing, China, 819220 [2] Redmond S, McNaught S, Zamel J, Iwaki L, Bammert S, Simpson R, Weiss S B, Szot J, Flegal B, Lee T, Komine H, Injeyan H and Ieee 2007 Conference on Lasers and Electro-Optics, 6-11 May 2007, Baltimore, Maryland United States, 2160 [3] Frank H K S, TObias M, Gerd M, Thomas S, Robert L, and Berry S 2004 Proceedings of the 5th International Conference on Space Optics (ICSO 2004), 30 March-2 April 2004, Toulouse, France, 599 [4] Basu C, Wessels P, Neumann J and Kracht D 2012 Opt. Lett. 37 2862 [5] Hovis F E, Edelman J, Schum T, Rudd J and Andes K 2008 Recent progress on single frequency lasers for space and high altitude aircraft applications, 14 February 2008, Bellingham E8710 [6] Peshko I I, Khiznyak A B, Dlugaszek A and Jabczynski J K 1996 Tunable single-frequency diode-pumped Nd:crystal lasers for Doppler radar application, 13 February 1996, Warsaw, Poland, 2729/31 [7] Dai S T, Jiang T, Wu L X, Wu H C and Lin W X 2019 Acta. Phys. Sin. 68 134202 (in Chinese) [8] Shen D, Ding L, Zhang Q, Zhu C, Wang Y, Zhang W and Zhang X 2020 Chin. Phys. B 29 ab8c41 [9] Aleksoff C C 1997 Opt. Lett. 1 54 [10] Ustinov N, Anufriev A, Vol'Pov A, Zimin I and Tolmachev A 1987 Soy. Quantum Electron 17 108 [11] Sica L 1992 App. Opt. 31 120 [12] Prasad N, Singh U, Hovis F and Armstrong D 2006 Proceedings of SPIE - The International Society for Optical Engineering, 19 May 2006, Orlando (Kissimmee), Florida, United States, 27 [13] Cuellar E L, Stapp J and Cooper J 2005 Laboratory and field experimental demonstration of a Fourier telescopy imaging system, 23 August 2005, San Diego, California, United States, 58960D [14] Mathis J, Stapp J, Cuellar E L, Cooper J, Morris A, Fairchild P, Hult D, Koski K, Ramzel L and Thornton M A 2005 Optics and Photonics 2005, 30 August 2005, San Diego, California, United States, 58960F [15] Olsen R C 2007 Remote sensing from air and space (Bellingham, Washington: SPIE) 314 [16] Cuellar E L, Cooper J, Mathis J and Fairchild P 2008 Laboratory demonstration of a multiple beam Fourier telescopy imaging system, 26 August 2008, San Diego, California, United States, 70940G [17] Spivey B, Stapp J and Sandler D 2006 Phase closure and object reconstruction algorithm for Fourier telescopy applied to fast-moving targets, 8 September 2006 San Diego, California, United States, 630702 [18] Stapp J, Spivey B, Chen L, Leon L, Hughes K, Sandler D and Cuellar E L 2006 Simulation of a Fourier telescopy imaging system for objects in low Earth orbit, 7 September 2006, San Diego, California, United States, 630701 [19] Danielmeyer H G 1970 IEEE J. Quantum Electon. 6 101 [20] Agger S, Povlsen J and Varming P 2004 Opt. Lett. 29 1503 [21] Lindberg H, Larsson A and Strassner M 2005 Opt. Lett. 30 2260 [22] Shen D Y, Tam S C, Lam Y L and Kobayashi T 2000 Opt. Rev. 7 451 [23] Wang Y, Huang L, Gong M, Zhang H, Lei M and He F 2007 Laser Phys. Lett. 4 580 [24] Mooradian J J Z A A 1989 Opt. Lett. 14 24 [25] Koch G J, Deyst J P and Storm M E 1993 Opt. Lett. 18 1235 [26] Wu K Y, Yang S H and Wei G H 2002 Opt. Commun. 203 323 [27] Kane T J and Byer R L 1985 Opt. Lett. 10 65 [28] Bode M, Freitag I, Tünnermann A and Welling H 1997 Opt. Lett. 22 1220 [29] Vance J D, She C Y and Moosmüller H 1998 Appl. Opt. 37 4891 [30] Liem A, Limpert J, Zellmer H and Tünnermann A 2003 Opt. Lett. 28 1537 [31] Kumar S C, Samanta G K, Devi K, Sanguinetti S and Ebrahim Z M 2012 Appl. Opt. 51 15 [32] Clobes A R and Brienza M J 1972 Appl. Phys. Lett. 21 265 [33] Dergachev A 2011 Opt. Express 19 6797 [34] Johnston J T F, Brady R H and Proffitt W 1982 Appl. Opt. 21 2307 [35] Jarrett S M and Young J F 1979 Opt. Lett. 4 176 [36] Li M, Zhao W, Hou W, Zhang S, Guo L, Lin X and Li J 2012 Appl. Phys. B 106 593 [37] Li M L, Zhao W F, Hou W, Xiong B, Zhang S B, Lin X C and Li J M 2011 Laser Phys. 21 1738 [38] Martin K I, Clarkson W A and Hanna D C 1996 Opt. Lett. 21 875 [39] Li M L, Zhao W F, Zhang S B, Guo L, Hou W, Li J M and Lin X C 2012 Appl. Opt. 51 1241 [40] Cheng Y, Kringlebotn J T, Loh W H, Laming R I and Payne D N 1995 Opt. Lett. 20 875 [41] Milovskii N V, Markelov N A and Il'in V A 1993 Laser Phys. 3 821 [42] Rantamaki A, Rautiainen J, Sirbu A, Mereuta A, Kapon E and Okhotnikov O G 2013 Opt. Express 21 2355 [43] Zeng X, Zhang M, Cao D, Sun D and Zhou H 2020 Chin. Phys. B 29 064206 [44] Shuai L, Ya D G, Zhong Z C, Lin Z, Ke L G, Zhi F Z, Bao S W, Jian X, Yi T X, Lei Y, Yang K, Yang L, Yan Y L, Qin J P and Zu Y X 2019 Chin. Phys. Lett. 36 044204 [45] Teng S, Jian G X and Yu C S 2019 Chin. Phys. Lett. 36 034201 [46] Xue Z C, Pei L L, Zai Y W and Qiang L 2019 Chin. Phys. Lett. 36 124201 [47] Urata Y, Kudo A, Wada S, Imai K and Ito 2003 Quasi-CW laser diode pumped master-oscillator power-amplifier system in single frequency operation, 22-27 June 2003, Munich, Germany, 77 [48] Tong L, Zhao Z, Cui L, Liu C, Chen J, Gao Q and Tang C 2011 Laser Phys. 21 52 [49] Ma X, Wang J, Zhou J, Zhu X and Chen W 2011 Appl. Phys. B 103 809 [50] Schröder T, Lemmerz C, Reitebuch O, Wirth M, Wührer C and Treichel R 2007 Appl. Phys. B 87 437 [51] Goodno G, Komine H, McNaught S, Redmond S, William, Long, Simpson R, Cheung E, Howland D, Epp P, McGraw P, Weber M, McClellan M, Bell D, Serrano J, Sollee J, Injeyan H, Landers F and DaSilva H 2005 Multi-kW near-diffraction-limited single-frequency Nd:YAG laser. Lasers and Electro-Optics Europe, 12-17 June 2005, Munich, Germany, 25 [52] Xu X, Xie G, Lu Y, Zhang L and Wan M 2015 High Power Laser Science and Engineering 3 e24 [53] Baida L 2003 Laser Optics (Beijing: Higher Education Press) p. 235 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|