Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120306    DOI: 10.1088/1674-1056/27/12/120306
GENERAL Prev   Next  

Possible generation of π-condensation in a free space by collisions between photons and protons

Qi-Ren Zhang(张启仁)
School of Physics, Peking University, Beijing 100871, China
Abstract  

A sharply peaked structure is found in the angular distribution of emitted π+ mesons from photon-proton collisions. This offers a possible way to generate a π+-condensation in free space. To make the stimulated emission of π+-mesons efficient, a ring resonator is designed.

Keywords:  hadron quantum electrodynamics      stimulated π+-emission      π-condensation      ring resonator  
Received:  07 July 2018      Revised:  26 September 2018      Accepted manuscript online: 
PACS:  03.70.+k (Theory of quantized fields)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  29.20.db (Storage rings and colliders)  
  13.60.Le (Meson production)  
Corresponding Authors:  Qi-Ren Zhang     E-mail:  zhangqr@pku.edu.cn

Cite this article: 

Qi-Ren Zhang(张启仁) Possible generation of π-condensation in a free space by collisions between photons and protons 2018 Chin. Phys. B 27 120306

[1] Sawyer R F 1972 Phys. Rev. Lett. 29 382
[2] Scalapino D J 1972 Phys. Rev. Lett. 29 386
[3] Zhang Q R 1981 Phys. Lett. B 104 347
[4] Zhang Q R 1981 Phys. Ener. Fort. Phys. Nucl. 5 15
[5] Zhang Q R 1981 Phys. Ener. Fort. Phys. Nucl. 5 314
[6] Zhang Q R and Greiner W 1995 Mod. Phys. Lett. A 10 2809
[7] Gao C Y, Guo H and Zhang Q R 1999 Int. J. Mod. Phys. E 8 39
[8] Son D T and Stephanov M A 2001 Phys. Rev. Lett. 86 592
[9] He L, Jin M and Zhuang P 2005 Phys. Rev. D 71 116001
[10] Cao G, He L and Huang X 2017 Chin. Phys. C 41 051001
[11] Zhang Q R 2014 Chin. Phys. B 23 010306
[12] Zhang Q R 2015 Chin. Phys. B 24 054208
[13] Lurie D 1968 Particles and Fields (New York: Interscience Publisher)
[14] Weinberg S 1995 The Quantum Theory of Fields Vol. I (Cambridge: Cambridge University Press)
[1] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[2] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[3] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[4] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[5] Coupled resonator-induced transparency on a three-ring resonator
Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰). Chin. Phys. B, 2018, 27(7): 074212.
[6] Theoretical study on the lasing plasmon of a split ring for label-free detection of single molecules and single nanoparticles
Chunjie Zheng(郑春杰), Tianqing Jia(贾天卿), Hua Zhao(赵华), Yingjie Xia(夏英杰), Shian Zhang(张诗按), Zhenrong Sun(孙真荣). Chin. Phys. B, 2018, 27(5): 057802.
[7] Origin of strain-induced resonances in flexible terahertz metamaterials
Xiu-Yun Sun(孙秀云), Li-Ren Zheng(郑立人), Xiao-Ning Li(李枭宁), Hua Xu(徐华), Xian-Ting Liang(梁先庭), Xian-Peng Zhang(张贤鹏), Yue-Hui Lu(鲁越晖), Young-Pak Lee, Joo-Yull Rhee, Wei-Jie Song(宋伟杰). Chin. Phys. B, 2016, 25(5): 057802.
[8] Band-stop optical nanofilters with split-ring resonators based on metal-insulator-metal structure
Zhang Hui-Yun (张会云), Shen Duan-Long (申端龙), Zhang Yu-Ping (张玉萍), Yang Wei-Jie (杨伟杰), Yuan Cai (袁偲), Liu Meng (刘蒙), Yin Yi-Heng (尹贻恒), Wu Zhi-Xin (吴志心). Chin. Phys. B, 2014, 23(9): 097301.
[9] Effects of oblique incidence on terahertz responses of planar split-ring resonators
Pan Xue-Cong (潘学聪), Xia Xiao-Xiang (夏晓翔), Wang Li (汪力). Chin. Phys. B, 2014, 23(5): 057804.
[10] Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback
Xiang Xing-Ye (向星烨), Wang Kui-Ru (王葵如), Yuan Jin-Hui (苑金辉), Jin Bo-Yuan (晋博源), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(3): 034206.
[11] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang(熊康), Xiao Xi(肖希), Hu Ying-Tao(胡应涛), Li Zhi-Yong(李智勇), Chu Tao(储涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2012, 21(7): 074203.
[12] A large bandwidth photonic delay line using passive cascaded silicon-on-insulator microring resonators
Hu Ying-Tao(胡应涛), Xiao Xi(肖希), Li Zhi-Yong(李智勇), Li Yun-Tao(李运涛), Fan Zhong-Chao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中). Chin. Phys. B, 2011, 20(7): 074208.
[13] Expanding the bandwidth of planar MNG materials with co-directional split-ring resonators
Tang Ming-Chun(唐明春), Xiao Shao-Qiu(肖绍球), Wang Duo(王多), Ge Guang-Ding(葛广顶), Bai Yan-Ying(柏艳英), Zhang Jun-Rui(张俊睿), and Wang Bing-Zhong (王秉中). Chin. Phys. B, 2011, 20(6): 067805.
[14] Electric and magnetic dipole couplings in split ring resonator metamaterials
Fan Jing(樊京), Sun Guang-Yong(孙光永), and Zhu Wei-Ren(朱卫仁) . Chin. Phys. B, 2011, 20(11): 114101.
[15] Design, fabrication and characterization of a high-performance microring resonator in silicon-on-insulator
Huang Qing-Zhong(黄庆忠), Yu Jin-Zhong(余金中), Chen Shao-Wu(陈少武), Xu Xue-Jun(徐学俊), Han Wei-Hua(韩伟华), and Fan Zhong-Chao(樊中朝) . Chin. Phys. B, 2008, 17(7): 2562-2566.
No Suggested Reading articles found!