Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes |
Hanying Deng(邓寒英)1,†, Changming Huang(黄长明)2, Yingji He(何影记)1, and Fangwei Ye(叶芳伟)3,‡ |
1 School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; 2 Department of Electronic Information and Physics, Changzhi University, Changzhi 046011, China; 3 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract A distant-neighbor quantum-mechanical method is used to study the nonlinear optical wave mixing in graphene nanoflakes (GNFs), including sum-and difference-frequency generation, as well as four-wave mixing. Our analysis shows that molecular-scale GNFs support quantum plasmons in the visible spectrum region, and significant enhancement of nonlinear optical wave mixing is achieved. Specifically, the second-and third-order wave-mixing polarizabilities of GNFs are dramatically enhanced, provided that one (or more) of the input or output frequencies coincide with a quantum plasmon resonance. Moreover, by embedding a cavity into hexagonal GNFs, we show that one can break the structural inversion symmetry and enable otherwise forbidden second-order wave mixing, which is found to be enhanced by the quantum plasmon resonance too. This study reveals that the molecular-sized graphene could be used in the quantum regime for nanoscale nonlinear optical devices and ultrasensitive molecular sensors.
|
Received: 17 December 2020
Revised: 09 February 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.An
|
(Optical susceptibility, hyperpolarizability)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11947007), the Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515011499), and the Department of Education of Guangdong Province, China (Grant No. 2019KTSCX087). |
Corresponding Authors:
†Corresponding author. E-mail: dhy0805@alumni.sjtu.edu.cn ‡Corresponding author. E-mail: fangweiye@sjtu.edu.cn
|
Cite this article:
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟) Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes 2021 Chin. Phys. B 30 044213
|
1 Boltasseva A and Atwater H A 2011 Science 331 290 2 Hess O, Pendry J B, Maier, S A, Oulton R F, Hamm J M and Tsakmakidis K L 2012 Nat. Mater. 11 573 3 Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401 4 Chen S, Li Z, Liu W, Cheng H and Tian J 2019 Adv. Mater. 31 1802458. 5 Li Z, Liu W, Cheng H and Chen S 2020 Sci. China-Phys. Mech. Astron. 63 284202 6 Berini P and de Leon I D 2011 Nat. Photon. 6 16 7 Giannini, V, Fernandez-Dominguez A I, Heck S C and Maier S A 2011 Chem. Rev. 111 3888 8 Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402 9 Atwater H A and Polman A 2010 Nat. Mater. 9 205 10 Panoiu N C and Osgood R M 2007 Opt. Lett. 32 2825 11 Clavero C 2014 Nat. Photon. 8 95 12 Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442 13 Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757 14 Ko K D, Kumar A, Fung K H, Ambekar R, Liu G L, Fang N X and Toussaint K C 2011 Nano Lett. 11 61 15 Yan L, Guan M and Meng S 2018 Nanoscale 10 8600 16 Harutyunyan H, Volpe G, Quidant R and Novotny L 2012 Phys. Rev. Lett. 108 217403 17 Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83 18 Pelton M and Bryant G W Introduction to Metal-nanoparticle Plasmonics(Hoboken: Wiley) 19 Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 20 Sol\'ís D M, Taboada J M, Obelleiro F, Liz-Marzan L M and de Abajo F J G 2014 ACS Nano 8 7559 21 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 22 Koppens F H L, Chang D E and De Abajo F J G 2011 Nano Lett. 11 3370 23 Yan H, Li Z, Li X, Zhu W, Avouris P and Xia F 2012 Nano Lett. 12 3766 24 Cox J D and de Abajo F J G 2014 Nat. Commun. 5 5725 25 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H, Liang X, Zettl A and Shen Y 2011 Nat. Nanotechnol. 6 630 26 Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, De Abajo F J G, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299 27 Gerislioglu B, Ahmadivand A and Pala N 2017 Opt. Mater. 73 729 28 Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749 29 de Abajo F J G 2014 ACS Photon. 1 135 30 Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G and Wang F 2011 Nature 471 617 31 Ruffieux P, Wang S, Yang B, Sànchez-Sànchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Müllen K and Fasel R 2016 Nature 531 489 32 Cox J D, Silveiro I and De Abajo F J G 2015 Acs Nano 10 1995 33 Deng H, Manrique D Z, Chen X, Panoiu N C and Ye F 2018 APL Photon. 3 016102 34 Manrique D Z, You J W, Deng H, Ye F and Panoiu N C 2017 J. Phys. Chem. C 121 27597 35 Boyd R W Nonlinear Optics. (3rd edn.) (Academic Press) 36 Tame M S, Mcenery K R, özdemir K, Lee J, Maier S A and Kim M S 2013 Nat. Phys. 9 329 37 Bozhevolnyi S I and Mortensen N A 2016 Nanophotonics 6 1185 38 Zayats A V, Smolyaninov I I and Maradudin I I 2005 Phys. Rep. 408 131 39 Yamamoto N, Hu C, Hagiwara S and Watanabe K 2015 Appl. Phys. Express 8 045103 40 Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401 41 Cox J D and De Abajo F J G 2015 ACS Photon. 2 306 42 Cox J D and de Abajo F J G 2019 Acc. Chem. Res. 52 2536 43 Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N and Kockaert P 2012 Opt. Lett. 37 1856 44 Tthakur S, Semnani B, Safavi-Naeini S and Majedi A H 2019 Sci. Rep. 9 10540 45 An Y Q, Rowe J E, Dougherty D B, Lee J U and Diebold A C 2014 Phys. Rev. B 89 115310 46 Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J and Osgood Jr R M 2013 Phys. Rev. X 3 021014 47 Kumar N, Kumar J, Gerstenkorn, Wang R, Chiu H Y, Smirl A L and Zhao H 2013 Phys. Rev. B 87 121406 48 Mikhailov A S 2007 Eur. Lett. 79 417 49 Lundeberg M B, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-Gonzalez P, Woessner A, Watanabe K and Taniguchi T 2017 Science 357 187 50 Ezawa M 2007 Phys. Rev. B 76 245415 51 Clementi E and Raimondi D L 1963 J. Chem. Phys. 38 2686 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|