CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study |
Guoqing Wang(王国庆)1,2, Wenjing Qin(秦文静)1, and Jing Shi(石晶)1,† |
1 Department of Physics, Jiangxi Normal University, Nanchang 330022, China; 2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract First-principles calculations are performed to investigate the effect of strain on the electrochemical performance of Janus MoSSe monolayer. The calculation focuses on the specific capacity, intercalation potential, electronic structure, and migration behavior of Li-ion under various strains by using the climbing-image nudged elastic band method. The result shows that the specific capacity is nearly unchanged under strain. But interestingly, the tensile strain can cause the intercalation potential and Li-ion migration energy barrier increase in MoSSe monolayer, whereas the compressive strain can lead to the intercalation potential and energy barrier decreasing. Thus, the rate performance of the MoSSe anode is improved. By analyzing the potential energy surface of MoSSe surface and equilibrium adsorption distance of Li-ion, we explain the physical origin of the change in the intercalation potential and migration energy barrier. The increase of MoSSe potential energy surface and the decrease of adsorption distance caused by tensile strain are the main reason that hinders Li-ion migration.
|
Received: 29 July 2020
Revised: 16 October 2020
Accepted manuscript online: 13 November 2020
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Fund: Project supported by the Education Department of Jiangxi Province, China (Grant No. GJJ160337). |
Corresponding Authors:
†Corresponding author. E-mail: shijing_scu@163.com
|
Cite this article:
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶) Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study 2021 Chin. Phys. B 30 046301
|
1 Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 2 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 3 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 4 Wang P, Orimo S, Matsushima T, Fujii H and Majer G 2002 Appl. Phys. Lett. 80 318 5 Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 6 Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chem. Int. Edit. 49 4059 7 Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Di Yuan K, Li Z and Chen W 2016 Nano Lett. 16 4903 8 Peng R, Ma Y, He Z, Huang B, Kou L and Dai Y 2019 Nano Lett. 19 1227 9 Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401 10 Mak K F and Shan J 2016 Nat. Photon. 10 216 11 Hong H, Cheng Y, Wu C, Huang C, Liu C, Yu W, Zhou X, Ma C, Wang J, Zhang Z, Zhao Y, Xiong J and Liu K 2020 Chin. Phys. B 29 077201 12 Wang H, Feng H and Li J 2014 Small 10 2165 13 Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103 14 Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N and Dai X Q 2019 Chin. Phys. B 28 107101 15 Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744 16 Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L and Lou J 2017 ACS Nano 11 8192 17 Ma X, Wu X, Wang H and Wang Y 2018 J. Mater. Chem. A 6 2295 18 Wei Y, Xu X, Wang S, Li W and Jiang Y 2019 Phys. Chem. Chem. Phys. 21 21022 19 Song B, Liu L and Yam C 2019 J. Phys. Chem. Lett. 10 5564 20 Li F, Wei W, Zhao P, Huang B and Dai Y 2017 J. Phys. Chem. Lett. 8 5959 21 Long C, Dai Y, Gong Z R and Jin H 2019 Phys. Rev. B 99 115316 22 Zhang X, Song Y, Zhang F, Fan Q, Jin H, Chen S, Jin Y, Gao S, Xiao Y, Mwankemwa N, Jiang L and Zhang W 2019 Mater. Res. Express 6 105055 23 Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612 24 Guan S S, Ke S S, Yu F F, Deng H X, Guo Y and Lü H F 2019 Appl. Surf. Sci. 496 143692 25 Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236 26 Wei S, Li J, Liao X, Jin H and Wei Y 2019 J. Phys. Chem. C 123 22570 27 Ma X, Yong X, Jian C C and Zhang J 2019 J. Phys. Chem. C 123 18347 28 Guan Z, Ni S and Hu S 2018 J. Phys. Chem. C 122 6209 29 Deng S, Li L, Guy O J and Zhang Y 2019 Phys. Chem. Chem. Phys. 21 18161 30 Guo R, Bu X, Wang S and Zhao G 2019 New J. Phys. 21 113040 31 Shang C, Lei X, Hou B, Wu M, Xu B, Liu G and Ouyang C 2018 J. Phys. Chem. C 122 23899 32 Zhou S H, Zhang J, Ren Z Z, Gu J F, Ren Y R, Huang S, Lin W, Li Y, Zhang Y F and Chen W K 2020 Chem. Phys. 529 110583 33 He H, Huang D, Gan Q, Hao J, Liu S, Wu Z, Pang W K, Johannessen B, Tang Y, Luo J L, Wang H and Guo Z 2019 ACS Nano 13 11843 34 Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F, Norskov J K and Zheng X 2016 Nat. Mater. 15 48 35 Zhang C, Li M Y, Tersoff J, Han Y, Su Y, Li L J, Muller D A and Shih C K 2018 Nat. Nanotechnol. 13 152 36 Zhang W J 2011 J. Power Sources 196 13 37 Ge Y F and Liu Y 2019 Chin. Phys. B 28 077104 38 Hao F and Chen X 2015 Mater. Res. Express 2 105016 39 Wang D D, Bao Y, Wu T S, Gan S Y, Han D X and Niu L 2018 Carbon 134 22 40 Hao J Y, Zheng J F, Ling F L, Chen Y K, Jing H R, Zhou T W, Fang L and Zhou M 2018 Sci. Rep. 8 2079 41 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 42 Blöchl P E 1994 Phys. Rev. B 50 17953 43 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 44 Grimme S 2006 J. Comput. Chem. 27 1787 45 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 46 Henkelman G, Uberuaga B P and Jònsson H 2000 J. Chem. Phys. 113 9901 47 Togo A and Tanaka I 2015 Scripta Mater. 108 1 48 Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 49 Bertolazzi S, Brivio J and Kis A 2011 ACS. Nano 5 9703 50 Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agrait N and Rubio-Bollinger G 2012 Adv. Mater. 24 772 51 Goodenough J B and Kim Y 2010 Chem. Mater. 22 587 52 Henkelman G, Arnaldsson A and Jònsson H 2006 Comp. Mater. Sci. 36 354 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|