|
|
Signal-to-noise ratio of Raman signal measured by multichannel detectors |
Xue-Lu Liu(刘雪璐)1, Yu-Chen Leng(冷宇辰)1,2, Miao-Ling Lin(林妙玲)1, Xin Cong(从鑫)1,2, and Ping-Heng Tan(谭平恒)1,2,† |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering&CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Raman spectroscopy has been widely used to characterize the physical properties of two-dimensional materials (2DMs). The signal-to-noise ratio (SNR or S/N ratio) of Raman signal usually serves as an important indicator to evaluate the instrumental performance rather than Raman intensity itself. Multichannel detectors with outstanding sensitivity, rapid acquisition speed and low noise level have been widely equipped in Raman instruments for the measurement of Raman signal. In this mini-review, we first introduce the recent advances of Raman spectroscopy of 2DMs. Then we take the most commonly used CCD detector and IGA array detector as examples to overview the various noise sources in Raman measurements and analyze their potential influences on SNR of Raman signal in experiments. This overview can contribute to a better understanding on the SNR of Raman signal and the performance of multichannel detector for numerous researchers and instrumental design for industry, as well as offer practical strategies for improving spectral quality in routine measurement.
|
Received: 08 June 2021
Revised: 01 August 2021
Accepted manuscript online: 19 August 2021
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
43.50.Yw
|
(Instrumentation and techniques for noise measurement and analysis)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
43.60.Cg
|
(Statistical properties of signals and noise)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301204), the National Natural Science Foundation of China (Grant No. 11874350), and Key Research Program of the Chinese Academy of Sciences (Grant Nos. XDPB22 and ZDBS-LY-SLH004). |
Corresponding Authors:
Ping-Heng Tan
E-mail: phtan@semi.ac.cn
|
Cite this article:
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒) Signal-to-noise ratio of Raman signal measured by multichannel detectors 2021 Chin. Phys. B 30 097807
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768 [3] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N 2018 Nat. Nanotechnol. 13 246 [4] Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Adv. Funct. Mater. 29 1604468 [5] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S and Ferrari A C 2007 Nano Lett. 7 2711 [6] Bruna M and Borini S 2009 Appl. Phys. Lett. 94 031901 [7] Li Y L, Rao Y, Mak K F, You Y M, Wang S Y, Dean C R and Heinz T F 2013 Nano Lett. 13 3329 [8] Seyler K L, Rivera P, Yu H Y, Wilson N P, Ray E L, Mandrus D G, Yan J Q, Yao W and Xu X D 2019 Nature 567 66 [9] Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C and Tan P H 2013 Phys. Rev. B 87 115413 [10] Ferrari A C and Basko D M 2013 Nat. Nanotech. 8 235 [11] Puretzky A A, Liang L B, Li X F, Xiao K, Wang K, MahjouriSamani M, Basile L, Idrobo J C, Sumpter B G, Meunier V and Geohegan D B 2015 ACS Nano 9 6333 [12] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S and Tan P H 2015 Chem. Soc. Rev. 44 2757 [13] Wu J B, Lin M L, Cong X, Liu H N and Tan P H 2018 Chem. Soc. Rev. 47 1822 [14] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401 [15] Zhao W J, Tan P H, Zhang J and Liu J 2010 Phys. Rev. B 82 245423 [16] Cong C X, Yu T, Sato K, Shang J Z, Saito R, Dresselhaus G F and Dresselhaus M S 2011 ACS Nano 5 8760 [17] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695 [18] Luo X, Zhao Y Y, Zhang J, Xiong Q H and Quek S Y 2013 Phys. Rev. B 88 075320 [19] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294 [20] Liang L B, Zhang J, Sumpter B G, Tan Q H, Tan P H and Meunier V 2017 ACS Nano 11 11777 [21] Park H, Shin G H, Lee K J and Choi S Y 2020 Nano Res. 13 576 [22] Debnath R, Maity I, Biswas R, Raghunathan V, Jain M and Ghosh A 2020 Nanoscale 12 17272 [23] Chen C, Chen X L, Yu H Y, Shao Y C, Guo Q S, Deng B C, Lee S, Ma C, Watanabe K, Taniguchi T, Park J G, Huang S X, Yao W and Xia F N 2019 ACS Nano 13 552 [24] Holler J, Meier S, Kempf M, Nagler P, Watanabe K, Taniguchi T, Korn T and Schuller C 2020 Appl. Phys. Lett. 117 013104 [25] Lin M L, Tan Q H, Wu J B, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770 [26] Parzefall P, Holler J, Scheuck M, Beer A, Lin K Q, Peng B, Monserrat B, Nagler P, Kempf M, Korn T and Schuller C 2021 2D Mater. 8 035030 [27] Lin M L, Zhou Y, Wu J B, Cong X, Liu X L, Zhang J, Li H, Yao W and Tan P H 2019 Nat. Commun. 10 2419 [28] McCreery R L 2000 Raman Spectroscopy for Chemical Analysis (John Wiley& Sons, Inc.) pp. 49–61 [29] Chen S, Lin X Q, Yuen C, Padmanabhan S, Beuerman R W and Liu Q 2014 Opt. Express 22 12102 [30] Kibria B M G and George F 2014 Commun. Stat. Simul. Comput. 43 443 [31] Fan X G, Zeng Y J, Zhi Y L, Nie T, Xu Y J and Wang X 2021 J. Raman Spectrosc. 52 890 [32] Schulze H G, Yu M M L, Addison C J, Blades M W and Turner R F B 2006 Appl. Spectrosc. 60 820 [33] Barton S J, Ward T E and Hennelly B M 2018 Anal. Methods 10 3759 [34] Tan P H 2018 Raman Spectroscopy of two-dimensional materials (Singapore: Springer) [35] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [36] Zhang X, Tan Q H, Wu J B, Shi W and Tan P H 2016 Nanoscale 8 6435 [37] Cong X, Lin M L and Tan P H 2016 J. Semicond. 40 091001 [38] Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C and Tan P H 2014 Nat. Commun. 5 5309 [39] Stenger I, Schue L, Boukhicha M, Berini B, Placais B, Loiseau A and Barjon J 2017 2D Mater. 4 031003 [40] Yagmurcukardes M, Peeters F M and Sahin H 2018 Phys. Rev. B 98 085431 [41] Lui C H, Ye Z P, Ji C, Chiu K C, Chou C T, Andersen T I, MeansShively C, Anderson H, Wu J M, Kidd T, Lee Y H and He R 2015 Phys. Rev. B 91 165403 [42] Huang S X, Liang L B, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V and Dresselhaus M S 2016 Nano Lett. 16 1435 [43] Leng Y C, Lin M L, Zhou Y, Wu J B, Meng D, Cong X, Li H and Tan P H 2021 Nanoscale 13 9732 [44] Wu J B, Hu Z X, Zhang X, Han W P, Lu Y, Shi W, Qiao X F, Ijäs M, Milana S, Ji W, Ferrari A C and Tan P H 2015 ACS Nano 9 7440 [45] Li H, Wu J B, Ran F R, Lin M L, Liu X L, Zhao Y Y, Lu X, Xiong Q H, Zhang J, Huang W, Zhang H and Tan P H 2017 ACS Nano 11 11714 [46] Froehlicher G, Lorchat E, Fernique F, Joshi C, Molina-Sanchez A, Wirtz L and Berciaud S 2015 Nano Lett. 15 6481 [47] Song Q J, Tan Q H, Zhang X, Wu J B, Sheng B W, Wan Y, Wang X Q, Dai L and Tan P H 2016 Phys. Rev. B 93 115409 [48] Tan Q H, Zhang X, Luo X D, Zhang J and Tan P H 2017 J. Semicond. 38 031006 [49] Na W, Kim K, Lee J U and Cheong H 2019 2D Mater. 6 015004 [50] Chen H, Xu W L, Broderick N and Han J D 2018 J. Raman Spectrosc. 49 1529 [51] Mu Z D, Zhao X W. Xie Z Y, Zhao Y J, Zhong Q F, Bo L and Gu Z Z 2013 J. Mater. Chem. B 1 1607 [52] McCreery R L 2000 Raman Spectroscopy for Chemical Analysis (John Wiley& Sons, Inc.) p. 188 [53] Stchur P, Cleveland D, Zhou J and Michel R G 2002 Appl. Spectrosc. Rev. 37 383 [54] Zong C, Xu M X, Xu L J, Wei T, Ma X, Zheng X S, Hu R and Ren B 2018 Chem. Rev. 118 4946 [55] Liu W, Liu S L, Chen D N and Niu H B 2014 Chin. Phys. B 23 104202 [56] Zonios G 2010 Appl. Opt. 49 163 [57] Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P and Tu C W 2006 Appl. Phys. Lett. 89 101912 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|