ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system |
Qinghong Liao(廖庆洪)1,2,†, Xiaoqian Wang(王晓倩)1, Gaoqian He(何高倩)1, and Liangtao Zhou(周良涛)1 |
1 Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China; 2 Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, China |
|
|
Abstract We theoretically explore the tunability of optomechanically induced transparency (OMIT) phenomenon and fast-slow light effect in a loop-coupled hybrid optomechanical system in which two optical modes are coupled to a common mechanical mode. In the probe output spectrum, we find that the interference phenomena OMIT caused by the optomechanical interactions and the normal mode splitting (NMS) induced by the strong tunnel coupling between the cavities can be observed. We further observe that the tunnel interaction will affect the distance and the heights of the sideband absorption peaks. The results also show that the switch from absorption to amplification can be realized by tuning the driving strength because of the existence of stability condition. Except from modulating the tunnel interaction, the conversion between slow light and fast light also can be achieved by adjusting the optomechanical interaction in the output field. This study may provide a potential application in the fields of high precision measurement and quantum information processing.
|
Received: 14 April 2021
Revised: 03 June 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Nn
|
(Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62061028), the Foundation for Distinguished Young Scientists of Jiangxi Province, China (Grant No. 20162BCB23009), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202010), the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12), and the Open Research Fund Program of the Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004). |
Corresponding Authors:
Qinghong Liao
E-mail: nculqh@163.com
|
Cite this article:
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛) Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system 2021 Chin. Phys. B 30 094205
|
[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [2] Agarwal G S and Huang S 2012 Phys. Rev. A 85 021810 [3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [4] Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [5] Huang S and Agarwal G S 2009 Phys. Rev. A 80 033807 [6] Hou B P, Wei L F and Wang S J 2015 Phys. Rev. A 92 033829 [7] Chen H J, Yang J Y, Wu H W and Li X C 2019 Eur. Phys. J. D 73 206 [8] Lai D G, Huang J F, Yin X L, Hou B P, Li W L, Vitali D, Nori F and Liao J Q 2020 Phys. Rev. A 102 011502 [9] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902 [10] Riviere R, Deleglise S, Weis S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2011 Phys. Rev. A 83 063835 [11] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359 [12] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [13] Lü H, Wang C Q, Yang L and Jing H 2018 Phys. Rev. Appl. 10 014006 [14] Li D K, Ma Y W, Chen Z H, Qian H W and Ning R X 2020 Opt. Quantum Electron. 52 253 [15] Harris S E 1997 Phys. Today 50 36 [16] Akram M J, Ghafoor F and Saif F 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065502 [17] Andersson G, Ekstrom M K and Delsing P 2020 Phys. Rev. Lett. 124 240402 [18] Qu K and Agarwal G S 2013 Phys. Rev. A 87 031802 [19] Yan X B 2020 Phys. Rev. A 101 043820 [20] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D and Vitali D 2013 Phys. Rev. A 88 013804 [21] Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2018 Phys. Rev. A 98 033832 [22] Xia W Q, Yu Y F and Zhang Z M 2017 Chin. Phys. B 26 054210 [23] Monroe C 2002 Nature 416 238 [24] Braunstein S L and Pati A K 2003 Rev. Mod. Phys. 77 513 [25] Zheng M H, Wang T, Wang D Y, Bai C H, Zhang S, An C S and Wang H F 2019 Sci. China-Phys. Mech. 62 950311 [26] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [27] Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826 [28] Safavinaeini A H, Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69 [29] Safavinaeini A H, Alegre T P, Winger M and Painter O 2010 Appl. Phys. Lett. 97 181106 [30] Liao J Q and Nori F 2013 Phys. Rev. A 88 023853 [31] Lü H, Jiang Y J, Wang Y Z and Jing H 2017 Photon. Res. 5 367 [32] Jing H, Ozdemir S K, Geng Z, Lü X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 5 9663 [33] Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604 [34] Chen B, Jiang C and Zhu K D 2011 Phys. Rev. A 83 055803 [35] Liu Y C, Li B B and Xiao Y F 2017 Nanophotonics: Berlin 6 789 [36] Xiong H and Wu Y 2018 Appl. Phys. Rev. 5 031305 [37] Wang B, Liu Z X, Kong C, Xiong H and Wu Y 2019 Opt. Express 27 8069 [38] Thevenaz L 2008 Nat. Photon. 2 474 [39] Tarhan D, Huang S and Mustecaploglu O Z E 2013 Phys. Rev. A 87 013824 [40] Ziauddin, Rahmatullah, Hussain A and Abbas M 2020 Opt. Commun. 461 125284 [41] Liao Q H, Xiao X, Nie W J and Zhou N R 2020 Opt. Express 28 5288 [42] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [43] Zhan X G, Si L G, Zheng A S and Yang X X 2013 J. Phys. B 46 025501 [44] Akram M J, Khan M M and Saif F 2015 Phys. Rev. A 92 023846 [45] Boyd R W and Gauthier D J 2009 Science 326 1074 [46] Wu Z, Luo R H, Zhang J Q, Wang Y H, Yang W and Feng M 2017 Phys. Rev. A 96 033832 [47] Jiang C, Liu H X, Cui Y S, Li X W, Chen G B and Chen B 2013 Opt. Express 21 12165 [48] Macke B and Segard B 2020 J. Opt. Soc. Am. B 37 2080 [49] Chen H J 2020 Eur. Phys. J. D 74 118 [50] Xu W L, Gao Y P, Cao C, Wang T J and Wang C 2020 Phys. Rev. A 102 043519 [51] Hao H, Kuzyk M C, Ren J J, Zhang F, Duan X K, Zhou L, Zhang T C, Gong Q H, Wang H L and Gu Y 2019 Phys. Rev. A 100 023820 [52] Zhao W, Zhang S D, Miranowicz A and Jing H 2020 Sci. China-Phys. Mech. 63 224211 [53] Lai D G, Wang X, Qin W, Hou B P, Nori F and Liao J Q 2020 Phys. Rev. A 102 023707 [54] Liu L, Hou B P, Zhao X H and Tang B 2019 Opt. Express 27 008361 [55] Lai D G, Zou F, Hou B P, Xiao Y F and Liao J Q 2018 Phys. Rev. A 98 023860 [56] Qian Z, Zhao M M, Hou B P and Zhao Y H 2017 Opt. Express 25 33097 [57] Bai C, Hou B P, Lai D G and Wu D 2016 Phys. Rev. A 93 043804 [58] Ludwig M, Safavinaeini A H, Painter O and Marquardt F 2012 Phys. Rev. Lett. 109 063601 [59] Komar P, Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P and Lukin M D 2013 Phys. Rev. A 87 013839 [60] Jiang C, Chen B and Zhu K D 2011 J. Europhys. Lett. 94 38002 [61] Paraiso T K, Kalaee M, Zang L Y, Pfeifer H, Marquardt F and Painter O 2015 Phys. Rev. X 5 041024 [62] Gan J H, Liu Y C, Lu C C, Wang X, Tey M K and You L 2019 Laser Photon. Rev. 13 1900120 [63] Vitali D, Tombesi P, Woolley M J, Doherty A C and Milburn G J 2007 Phys. Rev. A 76 042336 [64] Yellapragada K C, Pramanik N, Singh S and Lakshmi P A 2018 Phys. Rev. A 98 053822 [65] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2014 Phys. Rev. A 90 023817 [66] Jiang C, Cui Y S, Zhai Z Y, Yu H L, Li X W and Chen G B 2018 Opt. Express 26 28834 [67] Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|