Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国)1 and Hao Teng(滕浩)2,†
1 School of Physical Science and Technology, Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source. By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber (NL-PCF), the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm. In experiment, by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses, femtosecond laser with tuning range of 900-1290 nm is realized. The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61805274), the Major Program of the National Natural Science Foundation of China (Grant No. 12034020), and Research Foundation of Inner Mongolia University of China (Grant No. 21200-5215108).
Zhiguo Lv(吕志国) and Hao Teng(滕浩) Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber 2021 Chin. Phys. B 30 044209
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.