CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Device topological thermal management of β-Ga2O3 Schottky barrier diodes |
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟)†, Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵)‡ |
School of Microelectronics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The ultra-wide bandgap semiconductor β gallium oxide (β-Ga2O3) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga2O3, their power devices suffer from serious self-heating effect. To overcome this problem, we emphasize on the effect of device structure on peak temperature in β-Ga2O3 Schottky barrier diodes (SBDs) using TCAD simulation and experiment. The SBD topologies including crystal orientation of β-Ga2O3, work function of Schottky metal, anode area, and thickness, were simulated in TCAD, showing that the thickness of β-Ga2O3 plays a key role in reducing the peak temperature of diodes. Hence, we fabricated β-Ga2O3 SBDs with three different thickness epitaxial layers and five different thickness substrates. The surface temperature of the diodes was measured using an infrared thermal imaging camera. The experimental results are consistent with the simulation results. Thus, our results provide a new thermal management strategy for high power β-Ga2O3 diode.
|
Received: 07 January 2021
Revised: 28 February 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
73.40.Mr
|
(Semiconductor-electrolyte contacts)
|
|
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Kk
|
(Junction diodes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61925110, 61821091, 62004184, 62004186, and 51961145110), the National Key R&D Program of China (Grant Nos. 2018YFB0406504 and 2016YFA0201803), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (Grant No. XDB44000000), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-JSC048), the Fundamental Research Funds for the Central Universities, China (Grant Nos. WK2100000014 and WK2100000010), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010174002), and the Opening Project of Key Laboratory of Microelectronics Devices & Integration Technology in Institute of Microelectronics of CAS and Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano-Tech and Nano-Bionics of CAS. |
Corresponding Authors:
Guang-Wei Xu, Shi-Bing Long
E-mail: xugw@ustc.edu.cn;shibinglong@ustc.edu.cn
|
Cite this article:
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵) Device topological thermal management of β-Ga2O3 Schottky barrier diodes 2021 Chin. Phys. B 30 067302
|
[1] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001 [2] Li W, Nomoto K, Hu Z, Jena D and Xing H G 2020 IEEE Trans. Electron Dev. 67 3938 [3] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105 [4] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [5] Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van De Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M and Simmons J A 2018 Adv. Electron Mater. 4 1600501 [6] Sheoran H, Tak B R, Manikanthababu N and Singh R 2020 ECS J. Solid State Sci. Technol. 9 055004 [7] Zeng K and Singisetti U 2017 Appl. Phys. Lett. 111 122108 [8] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503 [9] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Crystal Growth 404 184 [10] Yang J, Ahn S, Ren F, Pearton S J, Jang S and Kuramata A 2017 IEEE Electron Dev. Lett. 38 906 [11] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Dev. Lett. 34 493 [12] Zhang Y, Su Q, Zhu J, Koirala S, Koester S J and Wang X 2020 Appl. Phys. Lett. 116 202101 [13] Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506 [14] Choi S, Peake G M, Keeler G A, Geib K M, Briggs R D, Beechem T E, Shaffer R A, Clevenger J, Patrizi G A, Klem J F, Tauke-Pedretti A and Nordquist C D 2016 IEEE T. Comp. Pack. Man. 6 740 [15] Zhou H, Maize K, Noh J, Shakouri A and Ye P D 2017 ACS Omega 2 7723 [16] Sharma R, Patrick E, Law M E, Yang J, Ren F, and Pearton S J 2019 ECS J. Solid State Sci. Technol. 8 Q3195 [17] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X and Liu M 2017 Appl. Phys. Lett. 110 093503 [18] Zhang Y, Li Y, Wang Z, Guo R, Xu S, Liu C, Zhao S, Zhang J and Hao Y 2020 Sci. China Phys. Mech. Astron. 63 117311 [19] Ma D, Zhang G and Zhang L 2020 J. Phys. D: Appl. Phys. 53 434001 [20] Russell S A O, Perez-Tomas A, Mcconville C F, Fisher C A, Hamilton D P, Mawby P A and Jennings M R 2017 IEEE J. Electron Dev. 5 256 [21] Lin C H, Hatta N, Konishi K, Watanabe S, Kuramata A, Yagi K and Higashiwaki M 2019 Appl. Phys. Lett. 114 032103 [22] Heng Z, Wheeler V D, Bai T, Shi J, Tadjer M J, Feygelson T, Hobart K D, Goorsky M S and Graham S 2020 Appl. Phys. Lett. 116 062105 [23] Van Erp R, Soleimanzadeh R, Nela L, Kampitsis G and Matioli E 2020 Nature 585 211 [24] Chatterjee B, Zeng K, Nordquist C D, Singisetti U and Choi S 2019 IEEE T. Comp. Pack. Man. 9 2352 [25] Zheng Y, Swinnich E and Seo J H 2020 ECS J. Solid State Sci. Technol. 9 055007 [26] Cheng Z, Yates L, Shi J, Tadjer M J, Hobart K D and Graham S 2019 APL Mater. 7 031118 [27] Wang Y, Xu W, You T, Mu F, Hu H, Liu Y, Huang H, Suga T, Han G, Ou X and Hao Y 2020 Sci. China Phys. Mech. Astron. 63 277311 [28] Xu W, Wang Y, You T G, Ou X, Han G Q, Hu H D, Zhang S B, Mu F W, Suga T, Zhang Y H, Hao Y and Wang X 2019 IEEE International Electron Devices Meeting (IEDM), December 09-12, 2019, San Francisco, United States, p. 274 [29] Wang Y, Xu W, Han G, You T, Mu F, Hu H, Liu Y, Zhang X, Huang H, Suga T, Ou X, Ma X and Hao Y 2021 J. Phys. D: Appl. Phys. 54 034004 [30] Chatterjee B, Jayawardena A, Heller E, Snyder D W, Dhar S and Choi S 2018 Rev. Sci. Instrum. 89 114903 [31] Oh J, Ma J and Yoo G 2019 Res. Phys. 13 102151 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|