Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067302    DOI: 10.1088/1674-1056/abeee2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Device topological thermal management of β-Ga2O3 Schottky barrier diodes

Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵)
School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
Abstract  The ultra-wide bandgap semiconductor β gallium oxide (β-Ga2O3) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga2O3, their power devices suffer from serious self-heating effect. To overcome this problem, we emphasize on the effect of device structure on peak temperature in β-Ga2O3 Schottky barrier diodes (SBDs) using TCAD simulation and experiment. The SBD topologies including crystal orientation of β-Ga2O3, work function of Schottky metal, anode area, and thickness, were simulated in TCAD, showing that the thickness of β-Ga2O3 plays a key role in reducing the peak temperature of diodes. Hence, we fabricated β-Ga2O3 SBDs with three different thickness epitaxial layers and five different thickness substrates. The surface temperature of the diodes was measured using an infrared thermal imaging camera. The experimental results are consistent with the simulation results. Thus, our results provide a new thermal management strategy for high power β-Ga2O3 diode.
Keywords:  β-Ga2O3 Schottky barrier diode      thermal management      TCAD simulation      infrared thermal imaging camera  
Received:  07 January 2021      Revised:  28 February 2021      Accepted manuscript online:  16 March 2021
PACS:  73.40.Mr (Semiconductor-electrolyte contacts)  
  84.30.Jc (Power electronics; power supply circuits)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Kk (Junction diodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61925110, 61821091, 62004184, 62004186, and 51961145110), the National Key R&D Program of China (Grant Nos. 2018YFB0406504 and 2016YFA0201803), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (Grant No. XDB44000000), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-JSC048), the Fundamental Research Funds for the Central Universities, China (Grant Nos. WK2100000014 and WK2100000010), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010174002), and the Opening Project of Key Laboratory of Microelectronics Devices & Integration Technology in Institute of Microelectronics of CAS and Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano-Tech and Nano-Bionics of CAS.
Corresponding Authors:  Guang-Wei Xu, Shi-Bing Long     E-mail:  xugw@ustc.edu.cn;shibinglong@ustc.edu.cn

Cite this article: 

Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵) Device topological thermal management of β-Ga2O3 Schottky barrier diodes 2021 Chin. Phys. B 30 067302

[1] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001
[2] Li W, Nomoto K, Hu Z, Jena D and Xing H G 2020 IEEE Trans. Electron Dev. 67 3938
[3] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105
[4] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[5] Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van De Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M and Simmons J A 2018 Adv. Electron Mater. 4 1600501
[6] Sheoran H, Tak B R, Manikanthababu N and Singh R 2020 ECS J. Solid State Sci. Technol. 9 055004
[7] Zeng K and Singisetti U 2017 Appl. Phys. Lett. 111 122108
[8] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503
[9] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Crystal Growth 404 184
[10] Yang J, Ahn S, Ren F, Pearton S J, Jang S and Kuramata A 2017 IEEE Electron Dev. Lett. 38 906
[11] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Dev. Lett. 34 493
[12] Zhang Y, Su Q, Zhu J, Koirala S, Koester S J and Wang X 2020 Appl. Phys. Lett. 116 202101
[13] Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506
[14] Choi S, Peake G M, Keeler G A, Geib K M, Briggs R D, Beechem T E, Shaffer R A, Clevenger J, Patrizi G A, Klem J F, Tauke-Pedretti A and Nordquist C D 2016 IEEE T. Comp. Pack. Man. 6 740
[15] Zhou H, Maize K, Noh J, Shakouri A and Ye P D 2017 ACS Omega 2 7723
[16] Sharma R, Patrick E, Law M E, Yang J, Ren F, and Pearton S J 2019 ECS J. Solid State Sci. Technol. 8 Q3195
[17] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X and Liu M 2017 Appl. Phys. Lett. 110 093503
[18] Zhang Y, Li Y, Wang Z, Guo R, Xu S, Liu C, Zhao S, Zhang J and Hao Y 2020 Sci. China Phys. Mech. Astron. 63 117311
[19] Ma D, Zhang G and Zhang L 2020 J. Phys. D: Appl. Phys. 53 434001
[20] Russell S A O, Perez-Tomas A, Mcconville C F, Fisher C A, Hamilton D P, Mawby P A and Jennings M R 2017 IEEE J. Electron Dev. 5 256
[21] Lin C H, Hatta N, Konishi K, Watanabe S, Kuramata A, Yagi K and Higashiwaki M 2019 Appl. Phys. Lett. 114 032103
[22] Heng Z, Wheeler V D, Bai T, Shi J, Tadjer M J, Feygelson T, Hobart K D, Goorsky M S and Graham S 2020 Appl. Phys. Lett. 116 062105
[23] Van Erp R, Soleimanzadeh R, Nela L, Kampitsis G and Matioli E 2020 Nature 585 211
[24] Chatterjee B, Zeng K, Nordquist C D, Singisetti U and Choi S 2019 IEEE T. Comp. Pack. Man. 9 2352
[25] Zheng Y, Swinnich E and Seo J H 2020 ECS J. Solid State Sci. Technol. 9 055007
[26] Cheng Z, Yates L, Shi J, Tadjer M J, Hobart K D and Graham S 2019 APL Mater. 7 031118
[27] Wang Y, Xu W, You T, Mu F, Hu H, Liu Y, Huang H, Suga T, Han G, Ou X and Hao Y 2020 Sci. China Phys. Mech. Astron. 63 277311
[28] Xu W, Wang Y, You T G, Ou X, Han G Q, Hu H D, Zhang S B, Mu F W, Suga T, Zhang Y H, Hao Y and Wang X 2019 IEEE International Electron Devices Meeting (IEDM), December 09-12, 2019, San Francisco, United States, p. 274
[29] Wang Y, Xu W, Han G, You T, Mu F, Hu H, Liu Y, Zhang X, Huang H, Suga T, Ou X, Ma X and Hao Y 2021 J. Phys. D: Appl. Phys. 54 034004
[30] Chatterjee B, Jayawardena A, Heller E, Snyder D W, Dhar S and Choi S 2018 Rev. Sci. Instrum. 89 114903
[31] Oh J, Ma J and Yoo G 2019 Res. Phys. 13 102151
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[3] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[4] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[5] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[6] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[7] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[8] Thermal conductivity of nanowires
Zhongwei Zhang(张忠卫), Jie Chen(陈杰). Chin. Phys. B, 2018, 27(3): 035101.
[9] Impact of neutron-induced displacement damage on the single event latchup sensitivity of bulk CMOS SRAM
Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yin-Hong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Li-Li Ding(丁李利), Jia-Nan Wei(魏佳男), Wen Zhao(赵雯). Chin. Phys. B, 2017, 26(1): 018501.
[10] Scaling effects of single-event gate rupture in thin oxides
Ding Li-Li (丁李利), Chen Wei (陈伟), Guo Hong-Xia (郭红霞), Yan Yi-Hua (闫逸华), Guo Xiao-Qiang (郭晓强), Fan Ru-Yu (范如玉). Chin. Phys. B, 2013, 22(11): 118501.
[11] Temperature-related performance of Yb3+:YAG disk lasers and optimum design for diamond cooling
Cao Ding-Xiang(曹丁象), Yu Hai-Wu(於海武), Zheng Wan-Guo(郑万国), He Shao-Bo(贺少勃), and Wang Xiao-Feng(王晓峰). Chin. Phys. B, 2006, 15(12): 2963-2969.
No Suggested Reading articles found!