Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057303    DOI: 10.1088/1674-1056/abe374
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A super-junction SOI-LDMOS with low resistance electron channel

Wei-Zhong Chen(陈伟中)1,2, Yuan-Xi Huang(黄元熙)1,†, Yao Huang(黄垚)1, Yi Huang(黄义)1, and Zheng-Sheng Han(韩郑生)2,3
1 College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A novel super-junction LDMOS with low resistance channel (LRC), named LRC-LDMOS based on the silicon-on-insulator (SOI) technology is proposed. The LRC is highly doped on the surface of the drift region, which can significantly reduce the specific on resistance (Ron,sp) in forward conduction. The charge compensation between the LRC, N-pillar, and P-pillar of the super-junction are adjusted to satisfy the charge balance, which can completely deplete the whole drift, thus the breakdown voltage (BV) is enhanced in reverse blocking. The three-dimensional (3D) simulation results show that the BV and Ron,sp of the device can reach 253 V and 15.5 mΩ·cm2, respectively, and the Baliga's figure of merit (FOM=BV2/Ron,sp) of 4.1 MW/cm2 is achieved, breaking through the silicon limit.
Keywords:  LDMOS      breakdown voltage (BV)      specific on resistance (Ron,sp)      figure of merit (FOM)  
Received:  07 December 2020      Revised:  18 January 2021      Accepted manuscript online:  05 February 2021
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  77.55.df (For silicon electronics)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  51.50.+v (Electrical properties)  
Corresponding Authors:  Yuan-Xi Huang     E-mail:  hyx115@126.com

Cite this article: 

Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生) A super-junction SOI-LDMOS with low resistance electron channel 2021 Chin. Phys. B 30 057303

[1] Qiao M, Zhang B, Xiao Z, Fang J and Li Z 2008 20th International Symposium on Power Semiconductor Devices and IC's, May 18-22, 2008, Orlando, USA, p. 52
[2] Qiao M, Jiang L L, Wang M, Huang Y, Liao H, Liang T, Sun Z, Zhang B, Li Z j, Huang G Z, Zhao Y Y, Lai L, Hu X, Zhuang X, Luo X R and Wang Z 2011 Proceedings of the 23rd International Symposium on Power Semiconductor Devices & IC's, May 18-22, San Diego, CA, p. 834
[3] Chen W, He L, Han Z and Huang Y 2018 J. Electron Dev. Soc. 6 708
[4] Li Z H, Ren M, Zhang B, Ma J, Hu T, Zhang S, Wang F and Chen J 2010 J. Semicond. 31 48
[5] Duan B, Cao Z, Yuan S and Yang Y 2015 IEEE Electron Dev. Lett. 36 1348
[6] Zhang G S, Zhang W T, He J Q, Zhu X H, Zhang S, Zhao J C, Zhang Z L, Qiao M, Zhou X, Li Z J and Zhang B 2019 31st International Symposium on Power Semiconductor Devices and ICs, May 19-23, 2019, Shanghai, China, p. 507
[7] Zhang W T, Wang R, Cheng S K, Gu Y, Zhang S, He B Y, Qiao M, Li Z J and Zhang B 2019 IEEE Electron Dev. Lett. 40 1969
[8] Nassif-Khalil S G and Salama C A T 2003 IEEE Trans. Electron Dev. 50 1385
[9] Zhang B, Wang W L, Chen W J, Li Z H and Li Z J 2009 IEEE Electron Dev. Lett. 30 849
[10] Yang S M, Tseng W C and Sheu G 2009 9th International Conference on Electronic Measurement & Instruments, August 16-19, 2009, Beijing, China, p. 4-594-4-597
[11] Chen W, Zhang B and Li Z 2007 Semicond. Soc. Technol. 22 464
[12] Park I and Salama C A T 2006 IEEE Trans. Electron Dev. 53 1909
[13] McPherson J W, Jinyoung Kim, Shanware A, Mogul H and Rodriguez J 2003 IEEE Trans. Electron Dev. 50 1771
[14] Kong M F, Liu C, Chen H Z, Yi B and Chen X B 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications, November 13-15, 2019, Chengdu, China, p. 119
[15] Tian R C, Luo X R, Zhou K, Xu Q, Wei J, Zhang B and Li Z J 2015 J. Semicond. 36 79
[16] Guo Y F, Yao J F, Zhang B, Lin H and Zhang C C 2015 IEEE Electron Dev. Lett. 36 262
[17] Zhang W T, Zhan Z Y, Yu Y, Cheng S K, Gu Y, Zhang S, Luo X R, Li Z H, Qiao M, Li Z J and Zhang B 2017 IEEE Electron Dev. Lett. 38 1555
[18] Tang P P, Wang Y, Bao M T, Luo X, Cao F and Yu C H 2019 Micro Nano Lett. 14 420
[19] Duan B X, Cao Z, Yuan X N, Yuan S and Yang Y T 2015 IEEE Electron Dev. Lett. 36 47
[20] Cao Z, Duan B X, Yuan S, Guo H J, Lv J M, Shi T T and Yang Y T 2017 29th International Symposium on Power Semiconductor Devices and IC's, 28 May-1 June, 2017, Sapporo, Japan, p. 283
[21] Wu W, Zhang B, Fang J and Li Z 2012 11th International Conference on Solid-State and Integrated Circuit Technology, 29 October-1 November, 2012, Xi'an, China, p. 1
[22] Iqbal M M H, Udrea F and Napoli E 2009 21st International Symposium on Power Semiconductor Devices & IC's, June 14-18, 2009, Barcelona, Spain, p. 247
[23] Guo S, Huang H and Chen X B 2018 IEEE Trans. Electron Dev. 65 1645
[24] Zhang W T, Li L, Qiao M, Zhan Z Y and Zhang B 2019 IEEE Electron Dev. Lett. 40 1151
[25] Kim M H, Kim J J, Choi Y S, Jeon C K, Kim S L, Kang H S and Song C S 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, April 14-17, 2003, Cambridge, UK, 2003, p. 220
[26] Zhang W T, Qiao M, Wu L J, Ye K, Wang Z, Wang Z G, Luo X R, Zhang S, Su W, Zhang B and Li Z J 2013 25th International Symposium on Power Semiconductor Devices and IC's, May 26-30, 2013, Kanazawa, Japan, p. 329
[27] Li Z H, Wu L J, Zhang B, Li Z J 2008 J. Semicond. 29 2153
[28] Li Q, Zhang Z Y, Li H O, Sun T Y, Chen Y H and Zuo Y 2019 Chin. Phys. B 28 037201
[29] Yao J F, Guo Y F, Zhang Z Y, Yang K M, Zhang M L and Xia T 2020 Chin. Phys. B 29 038503
[30] Cheng J J, Wu S Y, Chen W Z, Huang H M and Yi B 2019 J. Electron Dev. Soc. 7 682
[31] Guo S N, Cheng J J and Chen X B 2019 13th International Conference on Power Electronics and Drive Systems (PEDS), July 9-12, 2019, Toulouse, France, p. 1
[32] Cao Z and Jiao L C 2020 J. Electron Dev. Soc. 8 890
[33] Duan B X, Li M Z, Dong Z M, Wang Y D and Yang Y T 2019 IEEE Trans. Electron Dev. 66 4836
[34] Wei Y X, Luo X R, Ge W W, Zhao Z Y, Ma Z and Wei J 2019 IEEE Trans. Electron Dev. 66 2669
[1] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[2] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[3] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[4] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[5] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[6] A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology
Yan-Hui Zhang(张彦辉), Jie Wei(魏杰), Chao Yin(尹超), Qiao Tan(谭桥), Jian-Ping Liu(刘建平), Peng-Cheng Li(李鹏程), Xiao-Rong Luo(罗小蓉). Chin. Phys. B, 2016, 25(2): 027306.
[7] Novel substrate trigger SCR-LDMOS stacking structure for high-voltage ESD protection application
Ma Jin-Rong (马金荣), Qiao Ming (乔明), Zhang Bo (张波). Chin. Phys. B, 2015, 24(4): 047303.
[8] A low specific on-resistance SOI LDMOS with a novel junction field plate
Luo Yin-Chun (罗尹春), Luo Xiao-Rong (罗小蓉), Hu Gang-Yi (胡刚毅), Fan Yuan-Hang (范远航), Li Peng-Cheng (李鹏程), Wei Jie (魏杰), Tan Qiao (谭桥), Zhang Bo (张波). Chin. Phys. B, 2014, 23(7): 077306.
[9] Low on-resistance high-voltage lateral double-diffused metal oxide semiconductor with a buried improved super-junction layer
Wu Wei (伍伟), Zhang Bo (张波), Luo Xiao-Rong (罗小蓉), Fang Jian (方健), Li Zhao-Ji (李肇基). Chin. Phys. B, 2014, 23(3): 038503.
[10] An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS
Hu Xia-Rong (胡夏融), Lü Rui (吕瑞). Chin. Phys. B, 2014, 23(12): 128501.
[11] Lead zirconate titanate behaviors in LDMOS
Zhai Ya-Hong (翟亚红), Li Wei (李威), Li Ping (李平), Li Jun-Hong (李俊宏), Hu Bin (胡滨), Huo Wei-Rong (霍伟荣), Fan Xue (范雪), Wang Gang (王刚). Chin. Phys. B, 2013, 22(7): 078501.
[12] A low on-resistance buried current path SOI p-channel LDMOS compatible with n-channel LDMOS
Zhou Kun (周坤), Luo Xiao-Rong (罗小蓉), Fan Yuan-Hang (范远航), Luo Yin-Chun (罗尹春), Hu Xia-Rong (胡夏融), Zhang Bo (张波). Chin. Phys. B, 2013, 22(6): 067306.
[13] A new analytical model for the surface electric field distribution and breakdown voltage of the SOI trench LDMOS
Hu Xia-Rong(胡夏融), Zhang Bo(张波), Luo Xiao-Rong(罗小蓉), Wang Yuan-Gang(王元刚), Lei Tian-Fei(雷天飞), and Li Zhao-Ji(李肇基) . Chin. Phys. B, 2012, 21(7): 078502.
[14] New CMOS compatible super junction LDMOST with n-type buried layer
Duan Bao-Xing(段宝兴), Zhang Bo(张波), and Li Zhao-Ji(李肇基). Chin. Phys. B, 2007, 16(12): 3754-3759.
No Suggested Reading articles found!