Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034703    DOI: 10.1088/1674-1056/abc7a6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of uniform momentum zones on frictional drag within the turbulent boundary layer

Kangjun Wang(王康俊)1 and Nan Jiang(姜楠)1,2,
1 Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; 2 Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072, China
Abstract  Based on a set of experimental databases of turbulent boundary layers obtained from particle image velocimetry in the streamwise-wall-normal plane at friction-velocity-based Reynolds number Reτ =612, the influence of uniform momentum zones (UMZs) on the skin-friction drag is investigated. The skin-friction drag is measured by the single-pixel ensemble correlation method. The results show that the velocity fields with the number of UMZs larger than the mean value have a relatively low skin-friction drag, while the velocity fields with the number of UMZs less than the mean value have a relatively high skin-friction drag. By analyzing the statistical characteristics of UMZs, the dynamic correlation between the UMZs and skin-friction drag is explored. The velocity fields with a low number of UMZs present a sweep event. These sweep motions intensify the small-scale Reynolds shear stress in the near-wall region by modulation effects. The enhancement of small-scale Reynolds shear stress is the direct reason for the high skin-friction drag. Increasing the proportion of velocity fields with high UMZs amount may be a direction to reduce the skin-friction drag within the TBL.
Keywords:  turbulent boundary layers      uniform momentum zones      skin-friction drag  
Received:  17 August 2020      Revised:  05 October 2020      Accepted manuscript online:  05 November 2020
PACS:  47.85.lb (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11732010, 11972251, 11872272, 11902218, and 11802195) and the National Key R&D Program of China (Grant No. 2018YFC0705300).
Corresponding Authors:  Corresponding author. E-mail: nanj@tju.edu.cn   

Cite this article: 

Kangjun Wang(王康俊) and Nan Jiang(姜楠) Influence of uniform momentum zones on frictional drag within the turbulent boundary layer 2021 Chin. Phys. B 30 034703

1 Meinhart C D and Adrian R J 1995 Phys. Fluids 7 694
2 Adrian R J, Meinhart C D and Tomkins C D 2000 J. Fluid Mech. 422 1
3 Kwon Y S, Philip J, De Silva C M, Hutchins N and Monty J P 2014 J. Fluid Mech. 751 228
4 Eisma J, Westerweel J, Ooms G and Elsinga G E 2015 Phys. Fluids 27 055103
5 De Silva C M, Hutchins N and Marusic I 2016 J. Fluid Mech. 786 309
6 Townsend A A1980 The Structure of Turbulent Shear Flow 2nd edn (Cambridge: Cambridge University Press)
7 Perry A E and Chong M S 1982 J. Fluid Mech. 119 173
8 Marusic I and Perry A E 1995 J. Fluid Mech. 298 389
9 Perry A E and Marusic I 1995 J. Fluid Mech. 298 361
10 Laskari A, R de Kat, R J Hearst and B Ganapathisubramani 2018 J. Fluid Mech. 842 554
11 Baars W J, K M Talluru, N Hutchins and I Marusic 2015 Exps. Fluids 56 10
12 Lang S S, Geng X G and Zang D Y 2014 Acta Phys. Sin. 63 084704 (in Chinese)
13 Mei D J, Fan BC, Chen Y H and Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese)
14 Han Y, Zhang H, Fan B C, Li J, Jiang D W and Zhao Z J 2017 Chin. Phys. B 26 084704
15 Li S, Jiang N, Yang S Q, Huang Y X and Wu Y H 2018 Chin. Phys. B 27 104701
16 Li S, Jiang N and Yang S Q 2019 Acta Phys. Sin. 68 074702 (in Chinese)
17 Hutchins N, Monty J P, Ganapathisubramani B, Ng H C H and Marusic I 2011 J. Fluid Mech. 673 255
18 Hwang J and Sung H J 2017 J. Fluid Mech. 829 751
19 Bai H L, Y Zhou, W G Zhang, S J Xu, Y Wang and R A Antonia 2014 J. Fluid Mech. 750 316
20 Tian H P, Zhang J X, Jiang N and Yao Z H 2015 Exp. Therm. Fluid Sci 69 27
21 Zheng X B, Jiang N and Zhang H 2016 Chin. Phys. B 25 014703
22 Bai J X, Jiang N, Zheng X B, Tang Z Q, Wang K J and Cui X T 2018 Chin. Phys. B 27 074701
23 Jiang D W, Zhang H, Fan B H and Wang A H 2019 Chin. Phys. B 28 054701
24 Westerweel J, Geelhoed P F and Lindken R 2004 Exps. Fluids 37 375
25 K\"ahler C J, Scholz U and Ortmanns J 2006 Exp. Fluids 41 327
26 Wang J, Pan C and Wang J 2020 Phys. Rev. Fluids 5 074605
27 Shen J, Pan C and Wang J 2014 Sci. Chin.-Phys. Mech. Astron. 57 1352
28 Clauser F H 1954 J. Aero. Sci 21 91
29 Schlatter P and R \"Orl\"u 2010 J. Fluid Mech. 659 116
30 Chauhan K, Philip J, De Silva C M, Hutchins N and Marusic I 2014 J. Fluid Mech. 742 119
31 Chauhan K A, Monkewitz P A and Nagib H M 2009 Fluid Dyn. Res. 41 021404
32 De Silva C M, Hutchins N and Marusic I 19th Australasian Fluid Mechanics Conference, December 8-11, 2014, Melbourne, Australia
33 Adrian R J 2007 Phys. Fluids 19 041301
34 Fukagata K, Iwamoto K and Kasagi N 2002 Phys. Fluids 14 13
35 Hutchins N and Marusic I 2007 Phil. Trans. R. Soc. Lond. A 365 647
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[3] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[4] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[5] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[6] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[7] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[8] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[9] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[10] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[11] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
[12] Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations
Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Wang Yue (王悦 ). Chin. Phys. B, 2012, 21(11): 114701.
No Suggested Reading articles found!