Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 024704    DOI: 10.1088/1674-1056/ab671f

Dynamic evolution of vortex structures induced bytri-electrode plasma actuator

Bo-Rui Zheng(郑博睿)1, Ming Xue(薛明)2, Chang Ge(葛畅)1
1 School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 Department of Aeronautics and Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Plasma flow control is a new type of active flow control approach based on plasma pneumatic actuation. Dielectric barrier discharge (DBD) actuators have become a focus of international aerodynamic research. However, the practical applications of typical DBDs are largely restricted due to their limited discharge area and low relative-induced velocity. The further improvement of performance will be beneficial for engineering applications. In this paper, high-speed schlieren and high-speed particle image velocimetry (PIV) are employed to study the flow field induced by three kinds of plasma actuations in a static atmosphere, and the differences in induced flow field structure among typical DBD, extended DBD (EX-DBD), and tri-electrode sliding discharge (TED) are compared. The analyzing of the dynamic evolution of the maximum horizontal velocity over time, the velocity profile at a fixed horizontal position, and the momentum and body force in a control volume reveals that the induced velocity peak value and profile velocity height of EX-DBD are higher than those of the other two types of actuation, suggesting that EX-DBD actuation has the strongest temporal aerodynamic effect among the three types of actuations. The TED actuation not only can enlarge the plasma extension but also has the longest duration in the entire pulsed period and the greatest influence on the height and width of the airflow near the wall surface. Thus, the TED actuation has the ability to continuously influencing a larger three-dimensional space above the surface of the plasma actuator.
Keywords:  plasma flow control      dielectric barrier discharge      vortex dynamics      tri-electrode sliding discharge  
Received:  08 November 2019      Revised:  13 December 2019      Accepted manuscript online: 
PACS:  47.32.C- (Vortex dynamics)  
  52.40.-w (Plasma interactions (nonlaser))  
  52.50.Nr (Plasma heating by DC fields; ohmic heating, arcs)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51607188), the Foundation for Key Laboratories of National Defense Science and Technology, China (Grant No. 614220202011801), the Shaanxi Provincial Natural Science Basic Research Program, China (Grant No. 2019JM-393), the Shaanxi Provincial Key Industry Innovation, Chain (Grant No. 2017ZDCXL-GY-06-01), and Xi'an Muinicipal Science and Technology Project, China (Grant No. 201805037YD15CG21(28)).
Corresponding Authors:  Bo-Rui Zheng     E-mail:

Cite this article: 

Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅) Dynamic evolution of vortex structures induced bytri-electrode plasma actuator 2020 Chin. Phys. B 29 024704

[1] Corke T C, Enloe C L and Wilkinson S P 2010 Ann. Rev. Fluid Mech. 42 505
[2] Wang J J, Choi K S, Feng L H, Jukes T N and Whalley R D 2013 Prog. Aerosp. Sci. 62 52
[3] Li Y H, Liang H, Wu Y, Wang J and Wei 2008 J. Air Force Engineering University 9 5
[4] Wei B, Wu Y, Liang H, Zhu Y F, Chen J, Zhao G Y, Song H M and Jia M 2019 Int. J. Heat Mass Transfer 138 163
[5] Zheng B R, Ge C, Ke X Z, Xue M and Wang Y S 2019 AIAA 2019 0306
[6] Enloe C L, McLaughlin T E and VanDyken R D 2004 AIAA J. 42 595
[7] Thomas F O, Corke T C, Iqbal M, Kozlov A and Schatzman D 2009 AIAA J. 47 2169
[8] Zheng B R, Gao C, Li Y B, Feng L and Luo S J 2013 Plasma Sci. Technol. 15 350
[9] Louste C, Artana G, Moreau E and Touchard G 2005 J. Electrostat. 63 615
[10] Moreau E, Sosa R and Artana G 2008 J. Phys. D: Appl. Phys. 41 115204
[11] Zheng B R, Chen J, Ge C, Ke X Z and Liang H 2019 Proc. IMechE Part. G: J. Aerosp. Eng. 233 4788
[12] Moreau E, Louste C and Touchard G 2008 J. Electrostat. 66 107
[13] Benard N and Moreau E 2014 Exp. Fluids 55 1846
[14] Steven D S, Richard E H, William B, Liu D, Reeder M F and Stults J 2016 AIAA J. 54 3313
[15] Steven D S, Richard E H, William B, Liu D, Reeder M F and Stults J 2011 AIAA 2011 3732
[16] Zheng B R, Xue M, Ke X Z, Ge C, Wang Y S, Liu F and Luo S J 2019 AIAA J. 57 467
[17] Zheng B R, Ke X Z, Ge C, Zhu Y F, Wu Y, Liu F and Luo S J 2020 AIAA J. 58 In Press
[18] Nishida H and Shiraishi T 2015 AIAA J. 53 3483
[19] Soloviev V R and Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208
[20] Gibalov V I and Pietsch G J 2000 J. Phys. D: Appl. Phys. 33 2618
[21] Soloviev V R 2012 J. Phys. D: Appl. Phys. 45 025205
[22] Whalley R D and Kwing S C 2012 J. Fluid Mech. 703 192
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[3] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[4] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[5] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[6] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[7] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
[8] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[9] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[10] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[11] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[12] Spontaneous transition of one-dimensional plasma photonic crystal's orientation in dielectric barrier discharge
Fan Wei-Li (范伟丽), Dong Li-Fang (董丽芳). Chin. Phys. B, 2013, 22(1): 014213.
[13] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(7): 075204.
[14] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
[15] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen(李雪辰), Jia Peng-Ying(贾鹏英), Yuan-Ning(袁宁), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(4): 045204.
No Suggested Reading articles found!