Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024701    DOI: 10.1088/1674-1056/28/2/024701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow

Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康)
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
Abstract  In this paper, aerodynamic actuation characteristics of radio-frequency (RF) discharge plasma are studied and a method is proposed for shock wave control based on RF discharge. Under the static condition, a RF diffuse glow discharge can be observed; under the supersonic inflow, the plasma is blown downstream but remains continuous and stable. Time-resolved schlieren is used for flow field visualization. It is found that RF discharge not only leads to continuous energy deposition on the electrode surface but also induces a compression wave. Under the supersonic inflow condition, a weak oblique shock wave is induced by discharge. Experimental results of the shock wave control indicate that the applied actuation can disperse the bottom structure of the ramp-induced oblique shock wave, which is also observed in the extracted shock wave structure after image processing. More importantly, this control effect can be maintained steadily due to the continuous high-frequency (MHz) discharge. Finally, correlations for schlieren images and numerical simulations are employed to further explore the flow control mechanism. It is observed that the vortex in the boundary layer increases after the application of actuation, meaning that the boundary layer in the downstream of the actuation position is thickened. This is equivalent to covering a layer of low-density smooth wall around the compression corner and on the ramp surface, thereby weakening the compressibility at the compression corner. Our results demonstrate the ability of RF plasma aerodynamic actuation to control the supersonic airflow.
Keywords:  radio-frequency (RF) discharge plasma      surface discharge      flow control      aerodynamic actuation  
Received:  02 September 2018      Revised:  10 October 2018      Accepted manuscript online: 
PACS:  47.40.-x (Compressible flows; shock waves)  
  47.40.Ki (Supersonic and hypersonic flows)  
  52.70.Gw (Radio-frequency and microwave measurements)  
  52.80.Pi (High-frequency and RF discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472306, 51407197, and 51507187).
Corresponding Authors:  Hui-Min Song     E-mail:  min_cargi@sina.com

Cite this article: 

Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康) Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow 2019 Chin. Phys. B 28 024701

[1] Wu Y and Li Y H 2015 Acta Aeronautica ET Astronautica Sinica 36 381
[2] Russell A, Zare-Behtash H and Kontis K 2016 J. Electrostat. 80 34
[3] Menart J, Shang J, Atzbach C, Magoteaux S, Slagel M and Bilheimer B 2005 43rd AIAA Aerospace Sciences Meeting Exhibit, January 10-13 2005, Reno, USA, p. 947
[4] Azarova O A and Knight D D 2015 Aerosp. Sci. Technol. 43 343
[5] Yan H, Liu F, Xu J and Xue Y 2018 AIAA J. 56 1
[6] Wang H Y, Li J, Jin D, Dai H, Gan T and Wu Y 2017 Chin. J. Aeronaut. 30 1854
[7] Leonov S and Yarantsev D 2008 Fluid Dyn. 43 945
[8] Menier E, Leger L and Depussay E 2007 J. Phys. D: Appl. Phys. 40 695
[9] Joussot R, Lago V and Parisse J D 2015 Exp. Fluids 56 102
[10] Jin D, Cui W, Li Y H, Li F Y, Jia M, Sun Q and Zhang B L 2015 Chin. J. Aeronaut. 28 66
[11] Nishihara M, Gaitonde D and Adamovich I V 2013 51st AIAA Aerospace Sciences Meeting Including New Horizons Forum Aerospace Exposition, January 7-10, 2013, Grapevine, USA, p. 461
[12] Nishihara M, Takashima K, Rich J W and Adamovich I V 1980 Phys. Fluids 23 605
[13] Lashkov V, Mashek I, Anisimov Y, Ivanov V, Kolesnichenko Y and Ryvkin M 2004 42nd AIAA Aerospace Sciences Meeting Exhibit, January 5-8, 2004, Reno, USA, p. 671
[14] Wang H Y, Li J, Jin D, Zhang Z B, Tang M X and Wu Y 2017 Int. J. Heat Fluid Flow 67 133
[15] Klimov A, Grigorenko A and Efimov A 2014 52nd Aerospace Sciences Meeting, January 13-17, 2014, National Harbor, USA, p. 0960
[16] Dedrick J, Im S and Cappelli M A 2013 J. Phys. D: Appl. Phys. 46 405201
[17] Wang W L, Li J and Song H M 2017 Chin. Phys. B 26 015205
[18] Wang W L, Song H M, Li J, Jin D, Jia M and Wu Y 2017 21st AIAA International Space Planes Hypersonics Technologies Conference, March 6-9, 2017, Xiamen, China, p. 2283
[19] Wang J, Li Y H and Cheng B Q 2009 J. Phys. D: Appl. Phys. 42 165503
[20] Wang J, Li Y H and Xing F 2009 J. Appl. Phys. 106 073307
[21] Jin D, Li Y H and Jia M 2014 Chin. Phys. B 23 035201
[22] Yang Z, Song H M, Wang H Y, Guo S G, Jia M and Wang K 2018 Chin. Phys. B 27 378
[23] Leonov S and Yarantsev D 2008 J. Propul. Power 24 1168
[24] Leonov S, Firsov A, Yarantsev D, Falempin F and Goldfeld M 2013 17th AIAA Interational Space Planes & Hypersonic Systems & Technologies Conference, April 11-14, 2011, San Francisco, USA, p. 2362
[25] Falempin F, Firsov A, Yarantsev D, Goldfeld M, Timofeev K and Leonov S 2015 Exp. Fluids 56 1
[26] Gan T, Wu Y, Sun Z Z, Jin D, Song H M, Jia and M 2018 Phys. Fluids 30 055107
[27] Sartor F, Mettot C, Bur R and Sipp D 2015 J. Fluid Mech. 781 550
[28] Dupont P, Haddad C and Debiéve J F 2006 J. Fluid Mech. 559 255
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[3] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[4] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[5] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[6] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[7] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[8] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[9] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[10] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[11] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[12] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[13] Flow control of micro-ramps on supersonic forward-facing step flow
Qing-Hu Zhang(张庆虎), Tao Zhu(朱涛), Shihe Yi(易仕和), Anping Wu(吴岸平). Chin. Phys. B, 2016, 25(5): 054701.
[14] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[15] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
No Suggested Reading articles found!