Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054701    DOI: 10.1088/1674-1056/28/5/054701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force

Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华)
Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Based on the Fourier-Chebyshev spectral method, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with direct numerical simulation (DNS) methods for different Reynolds numbers. A formula is derived to express the relation between fluctuating velocities and the friction drag coefficient. With the application of electromagnetic force, the in-depth relations among the fluctuating velocities near the wall, Reynolds stress, and the effect of drag reduction for different Reynolds numbers are discussed. The results indicate that the maximum drag reductions can be obtained with an optimal combination of parameters for each case of different Reynolds numbers. The fluctuating velocities along the streamwise and normal directions are suppressed significantly, while the fluctuating velocity along the spanwise direction is enhanced dramatically due to the spanwise electromagnetic force. However, the values of Reynolds stress depend on the fluctuating velocities along the streamwise and normal directions rather than that along the spanwise direction. Therefore, the significant effect of drag reduction is obtained. Moreover, the maximum drag reduction is weakened due to the decay of control effect for fluctuating velocities as the Reynolds number increases.
Keywords:  flow control      turbulent channel flow      electromagnetic force      direct numerical simulation  
Received:  28 November 2018      Revised:  07 January 2019      Accepted manuscript online: 
PACS:  47.85.L- (Flow control)  
  47.85.lb (Drag reduction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11672135) and a Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201461).
Corresponding Authors:  Hui Zhang     E-mail:  zhanghui1902@hotmail.com

Cite this article: 

Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华) Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force 2019 Chin. Phys. B 28 054701

[1] Wang L, Xia Z X, Luo Z B, Zhou Y and Zhang Y 2014 Acta Phys. Sin. 63 194702 (in Chinese)
[2] Cao Y F, Gu Y S, Cheng K M, Xiao Z Y, Chen Z B and He K F 2015 Acta Aeronaut. Astronaut. Sin. 36 757 (in Chinese)
[3] Meng X S, Long Y X, Wang J L, Liu F and Luo S J 2018 Phys. Fluids 30 024101
[4] Zhang Z B, Wu Y, Jia M, Song H M, Sun Z Z and Li Y H 2017 Chin. Phys. B 26 065204
[5] Liu M K, Zhang H, Fan B C, Han Y and Gui M Y 2016 Acta Phys. Sin. 65 244702 (in Chinese)
[6] Auteri F, Baron A, Belan M, Campanardi G and Quadrio M 2010 Phys. Fluids 22 115103
[7] Lim J, Choi H and Kim J 1998 Phys. Fluids 10 1997
[8] Jiménez J and Pinelli A 1999 J. Fluid Mech. 389 335
[9] Satake S I and Kasagi N 1996 Int. J. Heat Fluid Flow 17 343
[10] Du Y and Karniadakis G E 2000 Science 288 1230
[11] Du Y, Symeonidis V and Karniadakis G E 2002 J. Fluid Mech. 457 1
[12] Lee C and Kim J 2002 Phys. Fluids 14 2523
[13] Yin J F, You Y X, Li W and Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese)
[14] Quadrio M, Ricco P and Viotti C 2009 J. Fluid Mech. 627 161
[15] Viotti C, Quadrio M and Luchini P 2009 Phys. Fluids 21 115109
[16] Moubarak L M and Antar G Y 2012 Exp. Fluids 53 1627
[17] Habchi C and Antar G 2016 Phys. Fluids 28 055102
[18] Ostillamónico R and Lee A A 2017 Far. Disc. 199 159
[19] Altıntaş A and Davidson L 2017 Acta. Mech. 228 1269
[20] Huang L P, Fan B C and Dong G 2010 Phys. Fluids 22 015103
[21] Huang L P, Choi K S, Fan B C and Chen Y H 2014 Sci. Chin.-Phys. Mech. Astron. 57 2133
[22] Han Y, Zhang H, Fan B C, Li J, Jiang D W and Zhao Z J 2017 Chin. Phys. B 26 084704
[23] Fukagata K, Iwamoto K and Kasagi N 2002 Phys. Fluids 14 L73
[24] Kim J, Moin P and Moser R 1987 J. Fluid Mech. 177 133
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[3] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[4] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[5] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[6] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[7] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[8] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[9] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[10] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[11] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[12] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[13] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[14] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[15] Flow control of micro-ramps on supersonic forward-facing step flow
Qing-Hu Zhang(张庆虎), Tao Zhu(朱涛), Shihe Yi(易仕和), Anping Wu(吴岸平). Chin. Phys. B, 2016, 25(5): 054701.
No Suggested Reading articles found!