Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 045202    DOI: 10.1088/1674-1056/21/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental investigation of nanosecond discharge plasma aerodynamic actuation

Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏)
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
Abstract  In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3$\Pi$u) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between the first negative system and the second positive system of N2, as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s.
Keywords:  plasma aerodynamic actuation      nanosecond pulsed discharge      plasma flow control      optical emission spectra  
Received:  15 June 2011      Revised:  06 September 2011      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.80.Pi (High-frequency and RF discharges)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  47.85.L- (Flow control)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50906100 and 10972236) and the Science Foundation of National Excellent Doctoral Dissertation of China (Grant No. 201172).
Corresponding Authors:  Wu Yun,wuyun1223@126.com     E-mail:  wuyun1223@126.com

Cite this article: 

Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) Experimental investigation of nanosecond discharge plasma aerodynamic actuation 2012 Chin. Phys. B 21 045202

[1] Corke T C, Post M L and Orlov D M 2010 Prog. Aerospace Sci. 43 505
[2] Moreau E 2007 J. Phys. D: Appl. Phys. 40 605
[3] Roth J R 2003 Phys. Plasmas 10 2117
[4] Enloe C L, McLaughlin T E, Dyken R D V and Kachner K D 2004 it AIAA J. 42 589
[5] Wu Y, Li Y H, Jia M, Song H M, Guo Z G, Zhu X M and Pu Y K 2008 it Appl. Phys. Lett. 93 031503
[6] Pinheiro M J 2006 Plasma Process. Polym. 3 135
[7] Li Y H, Wu Y, Zhou M, Su C B, Zhang X W and Zhu J Q 2010 Exp. Fluids 48 1015
[8] Roupassov D V, Nikipelov A A, Nudnova M M and Starikovskii A Y 2009 AIAA J. 47 168
[9] Likhanskii A V, Shneider M N, Macheret S O and Miles R B 2007 it Phys. Plasmas 14 073501
[10] Opaits D F, Likhanskii A V, Neretti G, Zaidi S, Shneider M N, Miles R B and Macheret S O 2008 J. Appl. Phys. 104 043304
[11] Opaits D F, Shneider M N and Miles R B 2009 Appl. Phys. Lett. 94 061503
[12] Unfer T and Boeuf J P 2009 J. Phys. D: Appl. Phys. 42 194017
[13] Aleksandrov N L, Kindysheva S V, Nudnova M M and Starikovskiy A Y 2010 J. Phys. D: Appl. Phys. 43 255201
[14] Walsh J L and Kong M G 2007 Appl. Phys. Lett. 91 251504
[15] Li Y H, Wu Y, Jia M, Zhou Z W, Guo Z G and Pu Y K 2008 Chin. Phys. Lett. 25 4068
[16] Wu Y, Li Y H, Jia M, Song H M, Su C B and Pu Y K 2010 Chin. J. Aeronaut. 23 39
[17] Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S and Lee E S 2006 Plasma Sources Sci. Technol. 15 416
[18] Macheret S O, Shneider M N and Miles R B 2002 IEEE Trans. Plasma Sci. 30 1301
[1] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[2] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[3] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[4] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[5] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[6] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[7] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[8] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[9] Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation
Kang Chen(陈康) and Hua Liang(梁华). Chin. Phys. B, 2016, 25(2): 024703.
No Suggested Reading articles found!