Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 065204    DOI: 10.1088/1674-1056/26/6/065204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Modeling and optimization of the multichannel spark discharge

Zhi-Bo Zhang(张志波)1, Yun Wu(吴云)1,2, Min Jia(贾敏)1, Hui-Min Song(宋慧敏)1, Zheng-Zhong Sun(孙正中)3, Ying-Hong Li(李应红)1
1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China;
2 Science and Technology on Plasma Dynamics Laboratory, Xi'an Jiaotong University, Xi'an 710049, China;
3 Department of Mechanical Engineering and Aeronautics, City University London, London, United Kingdom
Abstract  

This paper reports a novel analytic model of this multichannel spark discharge, considering the delay time in the breakdown process, the electric transforming of the discharge channel from a capacitor to a resistor induced by the air breakdown, and the varying plasma resistance in the discharge process. The good agreement between the experimental and the simulated results validated the accuracy of this model. Based on this model, the influence of the circuit parameters on the maximum discharge channel number (MDCN) is investigated. Both the input voltage amplitude and the breakdown voltage threshold of each discharge channel play a critical role. With the increase of the input voltage and the decrease of the breakdown voltage, the MCDN increases almost linearly. With the increase of the discharge capacitance, the MDCN first rises and then remains almost constant. With the increase of the circuit inductance, the MDCN increases slowly but decreases quickly when the inductance increases over a certain value. There is an optimal value of the capacitor connected to the discharge channel corresponding to the MDCN. Finally, based on these results, to shorten the discharge time, a modified multichannel discharge circuit is developed and validated by the experiment. With only 6-kV input voltage, 31-channels discharge is achieved. The breakdown voltage of each electrode gap is larger than 3 kV. The modified discharge circuit is certain to be widely used in the PSJA flow control field.

Keywords:  multichannel discharge circuit      circuit model      PSJA array      plasma flow control  
Received:  13 December 2016      Revised:  19 February 2017      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.30.-q (Plasma dynamics and flow)  
  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  47.85.L- (Flow control)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51336011, 51522606, 91541120, 51611130198, 51407197, and 11472306) and Royal Society (Grant No. IE150612).

Corresponding Authors:  Yun Wu     E-mail:  wuyun1223@126.com

Cite this article: 

Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红) Modeling and optimization of the multichannel spark discharge 2017 Chin. Phys. B 26 065204

[1] Corke T C, Enloe C L and Wilkinson S P 2010 Ann. Rev. Fluid Mech. 42 505
[2] Cattafesta III L N and Sheplak M 2011 Ann. Rev. Fluid Mech. 43 247
[3] Bletzinger P, Ganguly B N, Wie D V and Garscadden A 2005 J. Phys. D: Appl. Phys. 38 R33
[4] Webb N, Clifford C and Samimy M. 2013 Exp. Fluids 54 1545
[5] Hahn C, Kearney-Fischer M and Samimy M 2011 Exp. Fluids 51 1591
[6] Samimy M, Kim J H, Kastner J, Adamovich I and Utkin Y 2007 AIAA J. 45 890
[7] Narayanaswamy V, Raja L L and Clemens N T 2012 Phys. Fluids 24 076101
[8] Greene B R, Clemens N T, Magari P and Micka D 2015 Shock Waves 25 495
[9] Narayanaswamy V, Raja L L and Clemens N T 2010 AIAA J. 48 297
[10] Emerick T, Ali M Y, Foster C, Alvi F S and Popkin S 2014 Exp. Fluids 55 1858
[11] Golbabaei-Asl M, Knight D and Wilkinson S 2015 AIAA J. 53 501
[12] Popkin S H, Cybyk B Z, Foster C H and Alvi F S 2016 AIAA J. 54 1831
[13] Zong H, Wu Y, Song H and Jia M 2016 AIAA J. 54 3409
[14] Zong H, Wu Y, Li Y, Song H, Zhang Z and Jia M 2015 Physics of Fluids 27 027105
[15] Wu Y, Li J, Jia M, Liang H and Song H 2012 Chin. Phys. B 21 045202
[16] Wang L, Luo Z, Xia Z and Liu B 2013 Acta Phys. Sin. 62 125207 (in Chinese)
[17] Wang L, Xia Z, Luo Z, Zhou Y and Zhang Y 2014 Acta Phys. Sin. 63 194702 (in Chinese)
[18] Zhang C, Wang Y, Zhou Y, Xie Q, Wang R, Yan P and Shao T 2016 IEEE T. Plasma Sci. 44 2772
[19] Shao T, Jiang H, Zhang C, Yan P, Lomaev M I and Tarasenko V F 2013 Europhys. Lett. 101 45002
[20] Tie W, Liu X, Liu S and Zhang Q 2015 IEEE T. Plasma Sci. 43 937
[21] Zhang Z, Wu Y, Jia M, Song H, Sun Z, Zong H and Li Y 2017 Sensor Actuat A-Phys. 253 112
[22] Schavemaker P H and Van der Slui L 2000 IEEE T. Power Deliver 15 580
[23] Martin T H 1989. Sandia National Labs. Albuquerque, NM (USA) pp. 73-79
[24] Hippler R, Kersten H and Schmidt M 2008 Low temperature plasma: fundamentals, technologies and techniques, 2nd edn., Vol. 2, (Wiler-VCH) p. 465
[1] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[2] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[3] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[4] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[5] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[6] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[7] An optimized fitting function with least square approximation inInAs/AlSb HFET small-signal model for characterizingthe frequency dependency of impact ionization effect
He Guan(关赫), Hui Guo(郭辉). Chin. Phys. B, 2017, 26(5): 058501.
[8] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[9] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2015, 24(9): 094208.
[10] Analysis and modeling of resistive switching mechanism oriented to fault tolerance of resistive memory based on memristor
Huang Da (黄达), Wu Jun-Jie (吴俊杰), Tang Yu-Hua (唐玉华). Chin. Phys. B, 2014, 23(3): 038404.
[11] Analysis and modeling of resistive switching mechanisms oriented to resistive random-access memory
Huang Da (黄达), Wu Jun-Jie (吴俊杰), Tang Yu-Hua (唐玉华). Chin. Phys. B, 2013, 22(3): 038401.
[12] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[13] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
No Suggested Reading articles found!