Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 084704    DOI: 10.1088/1674-1056/26/8/084704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution

Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰)
Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  

A direct numerical simulation (DNS) is performed to investigate the control effect and mechanism of turbulent channel flow with the distribution of spanwise Lorentz force. A sinusoidal distribution of constant spanwise Lorentz force is selected, of which the control effects, such as flow characters, mean Reynolds stress, and drag reductions, at different parameters of amplitude A and wave number kx are discussed. The results indicate that the control effects vary with the parameter A and kx. With the increase of A, the drag reduction rate Dr first increases and then decreases rapidly at low kx, and slowly at high kx. The low drag reduction (or even drag increase) is due to a weak suppression or even the enhancements of the random velocity fluctuation and mean Reynolds stress. The efficient drag reduction is due to the quasi-streamwise vortex structure induced by Lorentz force, which contributes to suppressing the random velocity fluctuation and mean Reynolds stress, and the negative vorticity improves the distribution of streamwise velocity. Therefore, the optimal control effect with a drag reduction of up to 58% can be obtained.

Keywords:  flow control      turbulent channel flow      Lorentz force      direct numerical simulation  
Received:  24 March 2017      Revised:  13 April 2017      Accepted manuscript online: 
PACS:  47.85.L- (Flow control)  
  47.85.lb (Drag reduction)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11672135 and 11202102), the Fundamental Research Funds for the Central Universities, China (Grant No. 30916011347), and a Foundation for the Author of National Excellent Doctoral Dissertation, China (Grant No. 201461).

Corresponding Authors:  Hui Zhang     E-mail:  zhanghui1902@hotmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰) Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution 2017 Chin. Phys. B 26 084704

[1] Song B W, Ren F, Hu H B and Huang Q G 2015 Chin. Phys. B 24 014703
[2] Wang L, Xia Z X, Luo Z B, Zhou Y and Zhang Y 2014 Acta Phys. Sin. 63 194702 (in Chinese)
[3] Cao Y F, Gu Y S, Cheng K M, Xiao Z Y, Chen Z B and He K F 2015 Acta Aeronaut. Astronautics 36 757 (in Chinese)
[4] Zhang H, Fan B C and Chen Z H 2011 Chin. Phys. Lett. 28 124701
[5] Zhang H, Fan B C, Chen Z H, Chen S and Li H Z 2013 Chin. Phys. B 22 104701
[6] Li W, Jessen W, Roggenkamp D, Klaas M, Silex W, Schiek M and Schroder W 2015 Eur. J. Mech. B: Fluids 53 101
[7] Boomsma A and Sotiropoulos F 2016 Phys. Fluids 28 035106
[8] Bixler G D and Bhushan B 2013 Adv. Funct. Mater. 23 4507
[9] Li Z X, Hu B P, Lan S L, Zhang J B and Huang J J 2015 Computers & Fluids 119 26
[10] Touber E and Leschziner M A 2012 J. Fluid Mech. 693 150
[11] Quadrio M 2011 Phil. Trans. R. Soc. A 369 1428
[12] Choi K S and Clayton B R 2001 Int. J. Heat Fluid Flow 22 1
[13] Whally R D and Choi K S 2014 Exp. Fluids 55 1796
[14] Berger T W, Kim J, Lee C and Lim J 2000 Phys. Fluids 12 631
[15] Lee J H and Sung H J 2005 J. Turbul. 6 2
[16] Pang J, Choi K S, Aessopos A and Yoshida H 2004 AIAA 2004
[17] Pang J and Choi K S 2004 Phys. Fluids 16 35
[18] Xu P, Choi K S and Jukes T 2006 European drag reduction and flow control meeting, 2006, Ischia, Italy
[19] Du Y Q and Karniadakis G E 2000 Science 288 1230
[20] Du Y Q, Symeonidis V and Karniadakis G E 2002 J. Fluid Mech. 457 1
[21] Xu P and Choi K S 2007 Flow Control and MEMS (Berlin: Springer) p. 259
[22] Quadrio M and Ricco P 2009 J. Fluid Mech. 627 161
[23] Viotti C and Quadrio M 2009 Phys. Fluids 21 105
[24] Yin J F, You Y X, Li W and Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese)
[25] Huang L P, Fan B C and Dong G 2010 Phys. Fluids 22 015103
[26] Huang L P, Choi K S, Fan B C and Chen Y H 2014 Sci. China-Phys. Mech. Astron. 57 2133
[27] Wu W T, Hong Y J and Fan B C 2015 Appl. Math. Mech. 36 1113
[28] Kim J, Moin P and Moser R 1987 J. Fluid Mech. 177 133
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[3] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[4] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[5] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[6] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[7] Multiple reversals of vortex ratchet effects in a superconducting strip with inclined dynamic pinning landscape
An He(何安) and Cun Xue(薛存). Chin. Phys. B, 2020, 29(12): 127401.
[8] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[9] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[10] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[11] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[12] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[13] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[14] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[15] Lorentz force electrical impedance tomography using pulse compression technique
Zhi-shen Sun(孙直申), Guo-qiang Liu(刘国强), Hui Xia(夏慧). Chin. Phys. B, 2017, 26(12): 124302.
No Suggested Reading articles found!