Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 105205    DOI: 10.1088/1674-1056/27/10/105205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge

Zhi Su(苏志)1, Jun Li(李军)1, Hua Liang(梁华)1, Bo-Rui Zheng(郑博睿)2, Biao Wei(魏彪)1, Jie Chen(陈杰)1, Li-Ke Xie(谢理科)1
1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China;
2 School of Automation and Information, Xi'an University of Technology, Xi'an 710048, China
Abstract  

Plasma flow control (PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge (μs-DBD), and by nanosecond dielectric barrier discharge (NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, the μs-DBD is implemented on an unmanned aerial vehicle (UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87m, and the airspeed is no less than 30m/s. The flight data, static pressure data, and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons, which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.

Keywords:  plasma flow control      flight test      dielectric barrier discharge      UAV  
Received:  10 May 2018      Revised:  25 July 2018      Accepted manuscript online: 
PACS:  52.30.-q (Plasma dynamics and flow)  
  47.85.ld (Boundary layer control)  
  47.20.Ib (Instability of boundary layers; separation)  
  47.32.Ff (Separated flows)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51336011 and 51607188), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the PhD Research Startup Foundation of Xi'an University of Technology (Grant No. 256081802).

Corresponding Authors:  Hua Liang, Bo-Rui Zheng     E-mail:  lianghua82702@tom.com;527059665@qq.com

Cite this article: 

Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科) UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge 2018 Chin. Phys. B 27 105205

[1] Anderson J D 2014 Fundamental of aerodynamics (New York:McGraw Hill Book Company) pp. 381-398
[2] Greenblatt D and Wygnanski I 2000 Prog. Aerosp. Sci. 36 487
[3] Gadelhak M 1991 Asme Trans J. Fluids Eng. 113 5
[4] Lin J C 2002 Prog. Aerosp. Sci. 38 389
[5] Jin D, Li Y H, Jia M, Li F Y, Cui W, Sun Q, Zhang B L and Li J 2014 Chin. Phys. B 23 035201
[6] Sun Q, Cui W, Li Y H, Cheng B Q, Jin D and Li J 2014 Chin. Phys. B 23 075210
[7] Cheng K and Liang H 2016 Chin. Phys. B 25 024703
[8] Wang J J, Choi K S, Feng L H, Jukes T N and Whalley R D 2013 Prog. Aerosp. Sci. 62 52
[9] Roth J R, Sherman D M and Wilkinson S P 1998 36th AIAA Aerospace Sciences Meeting and Exhibit, January 12-15, 1998, Reno, Nevada, AIAA 1998:0328
[10] Corke T C, Ensole C L and Wilkinson S P 2010 Ann. Rev. Fluid Mech. 42 505
[11] Li Y H, Wu Y and Li J 2012 Int. J. Flow Control 4 1
[12] Roth J R, Sherman D M and Wilkinson S P 2000 AIAA J. 38 1166
[13] Bernard N, Pons-Prats J, Periaux J, Bugeda G, Braud P, Bonnet J P and Moreau E 2016 Exp. Fluid 57 1
[14] Greenblatt D, Kastantin Y, Nayeri C N and Paschereit C O 2008 AIAA J. 46 1554
[15] Yang L, Li J, Cai J, Wang G and Zhang Z 2016 J. Fluid Eng. 138 365
[16] Kelley C L, Bowles P O, Cooney J, He C, Corke T C, Osborne B A, Silkey J S and Zehnle J 2014 AIAA J. 52 1871
[17] He C, Corke T C and Patel M P 2009 J. Aircraft 46 864
[18] Roupassov D, Nikipelov A, Nudnova M and Starikovskii A 2009 AIAA J. 47 168
[19] Little J, Takashima K, Nishihara M, Adamovich I and Samimy M 2012 AIAA J. 50 350
[20] Little J, Takashima K, Nishihara M, Adamovich I and Samimy M 2010 AIAA 5th Flow Control Conference, AIAA 2010-4256
[21] Rethmel C, Little J, Takashima K, Sinha A, Adamovich I and Samimy M 2011 49th AIAA Aerospace Sciences Meeting, January 4-7, 2011, Orlando, Florida, AIAA 2011-487
[22] Han M H, Li J, Liang H, Niu Z G and Zhao G Y 2015 Plasma Sci. Technol. 17 502
[23] Zhao G Y, Li Y H, Liang H, Hua W Z and Han M H 2015 Acta Phys. Sin. 64 15101 (in Chinese)
[24] Wei B, Liang H, Niu Z G, Wang D B and Li Y H 2016 High Voltage Engineering 42 782 (in Chinese)
[25] Durasiewicz C, Singh A and Little J 2018 AIAA Aerospace Sciences Meeting, 8-12 January, 2018, Kissimmee, Florida, AIAA 2018-1061
[26] Sidorenko A, Budovsky A, Pushkarev A and Maslov A 2006 AIAA Aerospace Sciences Meeting & Exhibit 24 479
[27] Grundmann S, Frey M and Tropea C 2009 47$th AIAA Aerospace Sciences Meeting, January 5-8, 2009, Orlando, Florida, AIAA 2009-698
[28] Friedrichs W 2014 "Unmanned Aerial Vehicle for flow control experiments with dielectric barrier discharge plasma actuators", Ph. D. Dissertation (Darmstadt:Technical University of Darmstadt)
[29] Zhang X, Huang Y, Yang P Y, Zhang P, Huang Z Y, Wang D W and Li H X 2018 Acta Aeronautica Astronautica Sin. 39 121587 (in Chinese)
[30] Zhou H A, Du Z W and Gong K 2005 High Power Laser and Particle Beams 17 783 (in Chinese)
[31] Guo H X, Zhou H, Chen Y S, Zhang Y M, Gong R X, Guan Y, Han F B and Gong J C 2002 Microelectronics & Computer 3 17 (in Chinese)
[1] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[2] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[3] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[4] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[5] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[6] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
[7] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[8] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[9] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[10] Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation
Kang Chen(陈康) and Hua Liang(梁华). Chin. Phys. B, 2016, 25(2): 024703.
[11] Spontaneous transition of one-dimensional plasma photonic crystal's orientation in dielectric barrier discharge
Fan Wei-Li (范伟丽), Dong Li-Fang (董丽芳). Chin. Phys. B, 2013, 22(1): 014213.
[12] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(7): 075204.
[13] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
[14] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen(李雪辰), Jia Peng-Ying(贾鹏英), Yuan-Ning(袁宁), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(4): 045204.
[15] Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge
Shang Wan-Li(尚万里), Zhang Yuan-Tao(张远涛), Wang De-Zhen(王德真), Sang Chao-Feng(桑超峰), Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Liu Shen-Ye(刘慎业), and M.~G. Kong. Chin. Phys. B, 2011, 20(1): 015201.
No Suggested Reading articles found!