Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034701    DOI: 10.1088/1674-1056/abc3b6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Leakage of an eagle flight feather and its influence on the aerodynamics

Di Tang (唐迪)1,2,†, Dawei Liu(刘大伟)2,‡, Yin Yang(杨茵)2, Yang Li(李阳)2, Xipeng Huang(黄喜鹏)1, and Kai Liu(刘凯)3
1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; 2 High Speed Aerodynamic Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China; 3 Chengdu State-Owned Jinjiang Machine Factory, Chendu 610043, China
Abstract  We investigate how the barb of bird feathers is changed along both the rachis and barb. To investigate the microstructures and the mechanical behaviors of barbs, a series of barbs are manually cut from an eagle's primary feather to observe the cross sections. A Λ -like cross section with a tiny hook is observed at the right feet at each section. Afterwards, a measurement of the setup system is developed to evaluate the leakage ratio of a feather followed by a numerical predicting approach based on the CFD method. It is found that the air leakage increases linearly against the pressure, and the predicted results coincide well with the experimental results. Finally, the influences of leakage of the flight feather on both steady and unsteady aerodynamics are studied.
Keywords:  biomaterial      feather      leakage      large prey      microstructure      barbules      cross-section      aerodynamics  
Received:  23 July 2020      Revised:  16 September 2020      Accepted manuscript online:  22 October 2020
PACS:  47.32.cd (Vortex stability and breakdown)  
  47.32.Ff (Separated flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51705459) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20E050022).
Corresponding Authors:  Corresponding author. E-mail: tangdi@zjut.edu.cn Corresponding author. E-mail: 13404019740@163.com   

Cite this article: 

Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯) Leakage of an eagle flight feather and its influence on the aerodynamics 2021 Chin. Phys. B 30 034701

1 Ren L 2009 Sci. Chin. E-Technol. Sci. 52 273
2 Chen H W, Rao F G, Shang X P, Hang D Y and Hagiwara I 2014 Exp. Fluids 55 1698
3 Pan Y, Ji S, Tan D and Cao H Int. J. Adv. Manuf. Technol. 2020 (in press)
4 Li L, Qi H, Yin Z, Li D, Zhu Z, Tangwarodomnukun V and Tan D2019 Powder. Technol. 350 462
5 Rothstein J 2010 Annu. Rev. Fluid. Mech. 42 89
6 Fransson J H M, Talamelli A, Brandt L and Cossu C 2006 Phys. Rev. Lett. 96 064501
7 Son K, Choi J, Jeon W P and Choi H 2011 J. Fluid. Mech. 672 411
8 Laura Y M, Eric C, Teresa J F, Lindsie J, Amanda K S, Cole T and David L 2020 Science 367 293
9 Feng B B, Chen D R, Wang J D and Yang X T 2014 Adv. Mech. Engin. 7 849294
10 Elimelech Y and Ellington C P 2013 J. Exp. Biol. 216 303
11 Evelien V B, Roeland D K, Gerrit E E and David L 2015 J. Exp. Biol. 218 3179
12 Walsh M J 1983 AIAA J. 21 485
13 Tian L, Ren L Q, Han Z and Zhang S 2005 J. Bionic. Engin. 2 15
14 Nugroho B, Hutchins N and Monty J P 2013 Int. J. Heat. Fluid. Flow 41 90
15 Benschop H O G and Breugem W P 2017 J. Turbul. 18 717
16 Wang B and Meyers M A 2017 Acta Biomater. 48 270
17 Yuan L and Gong X S 2008 J. Exp. Biol. 211 1221
18 Tang D, Liu D W, Zhu H, Huang X P, Fan Z Y and Lei M X 2020 Chin. Phys. B 29 024703
19 Gordon J E1978 Structures(Penguin Press)
20 Sullivan T N, Wang B, Espinosa H D and Meyers M A 2017 Mater. Today 20 377
21 Bachmann T, Emmerlich J, Baumgartner W, Jochen M S and Hermann W 2012 J. Exp. Biol. 215 405
22 Purslow P P and Vincent J F V1978 J. Exp. Biol. 72 251
23 Fraser R D B and David A D P 2011 J. Struct. Biol. 173 391
24 Theagarten L S 2017 Sci. Rep. 7 45162
25 Qu H and Liu X M2019 J. Eng. Therm. 40 1793
26 He Y M, Lu C Y, Zheng W J, Yang J G, Chen S J, Li Z J, Sun Y and Gao Z L 2019 Surf. Coat. Technol. 358 11
27 Eric C, Laura Y M, Amanda K S and David L2020 Sci. Robot. 5 1246
28 Tarah N S, Andre\"í P, Steven A H, David K, Vlado A L and Marc A M 2016 Acta Biomater. 41 27
29 Piao Z Y, Xu B S, Wang H D and Yu X X 2019 Crit. Rev. Solid State 10 1
30 Proctor N S and Lynch P J1993 Manual of Ornithology (New Haven: Yale University Press)
31 Yang W and McKittrick J 2013 Acta Biomater. 9 9065
32 Bhattacharyya S and Singh A 2011 Int. J. Numer. Meth. Fluids 65 683
33 Liu H, Azarpeyvand M, Wei J and Qu Z 2015 J. Sound Vib. 334 190
34 Hahn S, Je J and Choi H 2020 J. Fluid Mech. 450 259
35 Jimenez J, Uhlmann M, Pinelli A and Kawahara G 2001 J. Fluid Mech. 442 89
36 Naito H and Fukagata K 2012 Phys. Fluids 24 117102
37 Liu H, Wei J and Qu Z 2013 J. Fluids Engin. 136 021302
38 Tang D, Liu D W and Fan Z Y2020 J. Test. Eval.
39 Tang D, Fan Z Y, Lei M X, Lv B B, Yu L and Cui H A 2019 Chin. Phys. B 28 034702
40 Breugem W P 2007 Phys. Fluids 19 103104
41 Brinkman H C 1949 Appl. Sci. Res. 1 27
[1] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[9] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[10] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[11] A novel polarization converter based on the band-stop frequency selective surface
Kun Liao(廖昆), Shining Sun(孙世宁), Xinyuan Zheng(郑昕原), Xianxian Shao(邵纤纤), Xiangkun Kong(孔祥鲲), and Shaobin Liu(刘少斌). Chin. Phys. B, 2022, 31(2): 024211.
[12] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[13] An improved lumped parameter model predicting attenuation of earmuff with air leakage
Xu Zhong(仲旭), Zhe Chen(陈哲), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(11): 114301.
[14] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[15] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
No Suggested Reading articles found!