CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity |
S K Mitro1, R Majumder2,†, K M Hossain3, Md Zahid Hasan4, Md Emran Hossain2, and M A Hadi5 |
1 Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Jamalpur- 2012, Bangladesh; 2 Physics Discipline, Khulna University, Khulna- 9208, Bangladesh; 3 Department of Materials Science and Engineering, University of Rajshahi, Rajshahi- 6205, Bangladesh; 4 Department of Electrical and Electronic Engineering, International Islamic University Chittagong, Kumira, Chittagong- 4318, Bangladesh; 5 Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh |
|
|
Abstract We theoretically study the structural, elastic and optical properties of ErPdBi together with its anisotropic behaviors using density functional theory. It is observed that ErPdBi satisfies the Born stability criteria nicely and possesses high quality of machinability. The anisotropic behavior of ErPdBi is reported with the help of theoretical anisotropy indices incorporating 3D graphical presentation, which suggests that ErPdBi is highly anisotropic in nature. It is noticed that the minimum thermal conductivity is very low for ErPdBi compared to the several species. This low value of minimum thermal conductivity introduces the potentiality of ErPdBi in high-temperature applications such as thermal barrier coatings. In addition, deep optical insights of ErPdBi reveal that our material can be used in different optoelectronic and electronic device applications ranging from organic light-emitting diodes, solar panel efficiency, waveguides etc. to integration of integrated circuits. Therefore, we believe that our results will provide a new insight into high-temperature applications and will benefit for the development of promising optoelectric devices as well.
|
Received: 24 June 2020
Revised: 12 August 2020
Accepted manuscript online: 15 August 2020
|
PACS:
|
62.20.Dc
|
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
31.15.E-
|
|
|
Corresponding Authors:
†Corresponding author. E-mail: rinkumajumder02@gmail.com
|
Cite this article:
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity 2021 Chin. Phys. B 30 016203
|
1 Dhar S K, Nambudripad N and Vijayaraghavan R 1988 J. Phys. F 18 L41 2 Pierre J and Karla I 2000 J. Magn. Magn. Mater. 217 74 3 Bay T V 2014 Solid State Commun. 183 13 4 Jung M H, Yoshino T, Kawasaki S, Pietrus T, Bando Y, Suemitsu T, Sera M and Takabatake T 2001 J. Appl. Phys. 89 7631 5 Bhattacharya S, Pope A L, Littleton IV R T, Tritt T M, Ponnambalam V, Xia Y and Poon S J 2000 Appl. Phys. Lett. 77 16 6 Barman C K and Alam A 2018 Phys. Rev. B 97 075302 7 Shekhar C, Ouardi S, Nayak A K, Fecher G H, Schnelle W and Felser C 2012 Phys. Rev. B 86 155314 8 Mukhopadhyay A, Mahana S, Chowki S, Topwal D and Mohapatra N 2017 AIP Conf. Proc. 1832 110024 9 Winiarski M J and Bilinska K 2019 Intermetallics 108 55 10 Pavlosiuk O, Filar K, Wisniewski P and Kaczorowski D 2015 Acta Phys. Pol. A 127 656 11 Pan Y, Nikitin A M, Bay T V, Huang Y K, Paulsen C, Yan B H and de Visser A 2013 Europhys. Lett. 104 27001 12 Sekimoto T, Kurosaki K, Muta H and Yamanaka S 2006 J. App. Phys. 99 103701 13 Pavlosiuk O, Fabreges X, Gukasov A, Meven M, Kaczorowski D and Wi\'sniewski P 2018 Physica B 536 56 14 Majumder R and Hossain M M 2019 Comput. Condens. Matter 21 e00402 15 Majumder R, Hossain M M and Shen D 2019 Mod. Phys. Lett. B 33 1950378 16 Gruhn T 2010 Phys. Rev. B 82 125210 17 Majumder R, Mitro S K and Bairagi B 2020 J. Alloys Compd. 836 155395 18 Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567 19 Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 20 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 21 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 22 Vanderbilt D 1990 Phys. Rev. B 41 7892 23 Majumder R and Mitro S K 2020 RSC Adv. 10 37482 24 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 25 Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768 26 Nielsen O H and Martin R M 1983 Phys. Rev. Lett. 50 697 27 Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828 28 Tse G and Yu D 2015 Comput. Condens. Matter 4 59 29 Huang S, Liu X, Zheng W, Guo J, Xiong R, Wang Z and Shi J 2018 J. Mater. Chem. A 6 20069 30 Shrivastava D and Sanyal S P 2018 Physica C 544 22 31 Shekhar C, Ouardi S, Nayak A K, Fecher G H, Schnelle W and Felser C 2012 Phys. Rev. B 86 155314 32 Pugh S F 1954 Lond. Edinb. Dubl. Phil. Mag. J. Sci. 45 823 33 Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comput. Mater. Sci. 44 774 34 Pettifor D G 1992 Mater. Sci. Technol. 8 345 35 Rubel M H K, Mitro S K, Mondal B K, Rahaman M M, Saiduzzaman M, Hossain J and Kumada N 2020 Physica C 574 1353669 36 Chen X Q, Niu H and Li D, Li Y 2011 Intermetallics 19 1275 37 Mattesini M, Ahuja R and Johansson B 2003 Phys. Rev. B 68 184108 38 Clarke D R 2003 Surf. Coat. Technol. 163 67 39 Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131 40 Wang J et al. 2014 J. Solid State Chem. 216 1 41 Mitro S K, Rahman M A, Parvin F and Islam A K M A 2019 Int. J. Mod. Phys. B 33 1950189 42 Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Appl. Phys. Lett. 109 023101 43 Zeng Y Z, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873 44 Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829 45 Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. Chin.-Phys. Mech. Astron. 63 276811 46 Chen X K and Chen K Q 2020 J. Phys.: Condens. Matter 32 153002 47 Gao X P, Jiang Y H, Zhou R and Feng J 2014 J. Alloys Compd. 587 819 48 Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891 49 Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010 50 Gueddouh A, Bentria B and Lefkaier I 2016 J. Magn. Magn. Mater. 406 192 51 Kube C M 2016 AIP Adv. 6 095209 52 Kube C M and Jong M D 2016 J. Appl. Phys. 120 165105 53 Brugger K 1965 J. Appl. Phys. 36 768 54 Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 595 14 55 Rahman M A, Mitro S K, Parvin F and Islam A K M A 2020 Indian J. Phys.(in press) 56 Naher M I and Naqib S H 2020 J. Alloys Compd. 829 154509 57 Majumder R, Sarker M A R, Hossain M M, Hossain M E, Shen D, Reza A K M S and Kabir M H 2019 J. Sci. Res. 11 195 58 Rubel M H K, Hossain K M, Mitro S K, Rahman M M, Hadi M A and Islam A K M A 2020 Mater. Today Commun. 24 100935 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|