Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016203    DOI: 10.1088/1674-1056/abaf9d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity

S K Mitro1, R Majumder2,†, K M Hossain3, Md Zahid Hasan4, Md Emran Hossain2, and M A Hadi5
1 Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Jamalpur- 2012, Bangladesh; 2 Physics Discipline, Khulna University, Khulna- 9208, Bangladesh; 3 Department of Materials Science and Engineering, University of Rajshahi, Rajshahi- 6205, Bangladesh; 4 Department of Electrical and Electronic Engineering, International Islamic University Chittagong, Kumira, Chittagong- 4318, Bangladesh; 5 Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh
Abstract  We theoretically study the structural, elastic and optical properties of ErPdBi together with its anisotropic behaviors using density functional theory. It is observed that ErPdBi satisfies the Born stability criteria nicely and possesses high quality of machinability. The anisotropic behavior of ErPdBi is reported with the help of theoretical anisotropy indices incorporating 3D graphical presentation, which suggests that ErPdBi is highly anisotropic in nature. It is noticed that the minimum thermal conductivity is very low for ErPdBi compared to the several species. This low value of minimum thermal conductivity introduces the potentiality of ErPdBi in high-temperature applications such as thermal barrier coatings. In addition, deep optical insights of ErPdBi reveal that our material can be used in different optoelectronic and electronic device applications ranging from organic light-emitting diodes, solar panel efficiency, waveguides etc. to integration of integrated circuits. Therefore, we believe that our results will provide a new insight into high-temperature applications and will benefit for the development of promising optoelectric devices as well.
Keywords:  ErPdBi      minimum thermal conductivity      anisotropy      density functional theory (DFT)  
Received:  24 June 2020      Revised:  12 August 2020      Accepted manuscript online:  15 August 2020
PACS:  62.20.Dc  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  31.15.E-  
Corresponding Authors:  Corresponding author. E-mail: rinkumajumder02@gmail.com   

Cite this article: 

S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity 2021 Chin. Phys. B 30 016203

1 Dhar S K, Nambudripad N and Vijayaraghavan R 1988 J. Phys. F 18 L41
2 Pierre J and Karla I 2000 J. Magn. Magn. Mater. 217 74
3 Bay T V 2014 Solid State Commun. 183 13
4 Jung M H, Yoshino T, Kawasaki S, Pietrus T, Bando Y, Suemitsu T, Sera M and Takabatake T 2001 J. Appl. Phys. 89 7631
5 Bhattacharya S, Pope A L, Littleton IV R T, Tritt T M, Ponnambalam V, Xia Y and Poon S J 2000 Appl. Phys. Lett. 77 16
6 Barman C K and Alam A 2018 Phys. Rev. B 97 075302
7 Shekhar C, Ouardi S, Nayak A K, Fecher G H, Schnelle W and Felser C 2012 Phys. Rev. B 86 155314
8 Mukhopadhyay A, Mahana S, Chowki S, Topwal D and Mohapatra N 2017 AIP Conf. Proc. 1832 110024
9 Winiarski M J and Bilinska K 2019 Intermetallics 108 55
10 Pavlosiuk O, Filar K, Wisniewski P and Kaczorowski D 2015 Acta Phys. Pol. A 127 656
11 Pan Y, Nikitin A M, Bay T V, Huang Y K, Paulsen C, Yan B H and de Visser A 2013 Europhys. Lett. 104 27001
12 Sekimoto T, Kurosaki K, Muta H and Yamanaka S 2006 J. App. Phys. 99 103701
13 Pavlosiuk O, Fabreges X, Gukasov A, Meven M, Kaczorowski D and Wi\'sniewski P 2018 Physica B 536 56
14 Majumder R and Hossain M M 2019 Comput. Condens. Matter 21 e00402
15 Majumder R, Hossain M M and Shen D 2019 Mod. Phys. Lett. B 33 1950378
16 Gruhn T 2010 Phys. Rev. B 82 125210
17 Majumder R, Mitro S K and Bairagi B 2020 J. Alloys Compd. 836 155395
18 Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
19 Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
20 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
21 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
22 Vanderbilt D 1990 Phys. Rev. B 41 7892
23 Majumder R and Mitro S K 2020 RSC Adv. 10 37482
24 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
25 Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
26 Nielsen O H and Martin R M 1983 Phys. Rev. Lett. 50 697
27 Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828
28 Tse G and Yu D 2015 Comput. Condens. Matter 4 59
29 Huang S, Liu X, Zheng W, Guo J, Xiong R, Wang Z and Shi J 2018 J. Mater. Chem. A 6 20069
30 Shrivastava D and Sanyal S P 2018 Physica C 544 22
31 Shekhar C, Ouardi S, Nayak A K, Fecher G H, Schnelle W and Felser C 2012 Phys. Rev. B 86 155314
32 Pugh S F 1954 Lond. Edinb. Dubl. Phil. Mag. J. Sci. 45 823
33 Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comput. Mater. Sci. 44 774
34 Pettifor D G 1992 Mater. Sci. Technol. 8 345
35 Rubel M H K, Mitro S K, Mondal B K, Rahaman M M, Saiduzzaman M, Hossain J and Kumada N 2020 Physica C 574 1353669
36 Chen X Q, Niu H and Li D, Li Y 2011 Intermetallics 19 1275
37 Mattesini M, Ahuja R and Johansson B 2003 Phys. Rev. B 68 184108
38 Clarke D R 2003 Surf. Coat. Technol. 163 67
39 Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
40 Wang J et al. 2014 J. Solid State Chem. 216 1
41 Mitro S K, Rahman M A, Parvin F and Islam A K M A 2019 Int. J. Mod. Phys. B 33 1950189
42 Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Appl. Phys. Lett. 109 023101
43 Zeng Y Z, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
44 Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
45 Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. Chin.-Phys. Mech. Astron. 63 276811
46 Chen X K and Chen K Q 2020 J. Phys.: Condens. Matter 32 153002
47 Gao X P, Jiang Y H, Zhou R and Feng J 2014 J. Alloys Compd. 587 819
48 Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
49 Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
50 Gueddouh A, Bentria B and Lefkaier I 2016 J. Magn. Magn. Mater. 406 192
51 Kube C M 2016 AIP Adv. 6 095209
52 Kube C M and Jong M D 2016 J. Appl. Phys. 120 165105
53 Brugger K 1965 J. Appl. Phys. 36 768
54 Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 595 14
55 Rahman M A, Mitro S K, Parvin F and Islam A K M A 2020 Indian J. Phys.(in press)
56 Naher M I and Naqib S H 2020 J. Alloys Compd. 829 154509
57 Majumder R, Sarker M A R, Hossain M M, Hossain M E, Shen D, Reza A K M S and Kabir M H 2019 J. Sci. Res. 11 195
58 Rubel M H K, Hossain K M, Mitro S K, Rahman M M, Hadi M A and Islam A K M A 2020 Mater. Today Commun. 24 100935
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[12] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[13] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[14] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[15] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
No Suggested Reading articles found!