Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 106201    DOI: 10.1088/1674-1056/aba9bd

Synthesis of black phosphorus structured polymeric nitrogen

Ying Liu(刘影)1,†, Haipeng Su(苏海鹏)1, Caoping Niu(牛草萍)2,3,, Xianlong Wang(王贤龙)2,3, Junran Zhang(张俊然)4, Zhongxue Ge(葛忠学)1, and Yanchun Li(李延春)4
1 Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
3 University of Science and Technology of China, Hefei 230026, China
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Since the discoveries of polymeric nitrogen, named cg-N (2004), LP-N (2014), HLP-N (2019), another polymorph named black phosphorus nitrogen (BP-N) was synthesized at high-pressure-high-temperature conditions. The narrow existing pressure region and similar synthesized pressure of BP-N compared with cg-N indicate that the stable energy and enthalpy of formation of these two structures are close to each other, which was confirmed by our theoretical calculation. In order to obtain the pressure region of BP-N phase, pure N2 and TiN/Pb + N2 precursors were used for laser-heating high pressure experiments in diamond anvil cell (DAC), and the phase identity was examined by Raman and XRD mapping. BP-N can be synthesized in the pressure range of 130 GPa to 140 GPa with the assistance of heating absorber. With the decrease of the pressure, BP-N can be quenched to ∼ 40 GPa. The synthesizing pressure–temperature and the stable pressure region of BP-N are important for further exploration of BP-N and its kinetic and thermal dynamic relationship with other polymeric nitrogen, especially cg-N.

Keywords:  high pressure and high temperature      energetic materials      polymeric nitrogen      diamond anvil cell  
Received:  23 June 2020      Revised:  16 July 2020      Accepted manuscript online:  28 July 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.05.cp (X-ray diffraction)  
  42.62.-b (Laser applications)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Corresponding Authors:  Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
* Project supported by the National Natural Science Foundation of China (Grant No. 11904281).

Cite this article: 

Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春) Synthesis of black phosphorus structured polymeric nitrogen 2020 Chin. Phys. B 29 106201

Fig. 1.  

(a) Raman spectra of nitrogen heated at 143 GPa from run I (black) compared with the experimental spectra for BP-structured polymeric nitrogen (red bars) at 138 GPa, 2200 K.[16] Inset shows the microscopic images of the sample under illumination with both reflected and transmitted light before and after laser heating. (b) Crystal structure of BP-N under 140 GPa.

Fig. 2.  

Raman spectra of nitrogen before and after heating at 130 GPa using TiN and Pb as laser absorber, respectively.

# Pressure/GPa Temperature/K Absorber Results
I ∼ 143 ∼ 2500 BP-N
II ∼ 130 ∼ 1800 cg-N
III ∼ 130 ∼ 2500 TiN BP-N
IV ∼ 130 ∼ 2500 Pb BP-N
V ∼ 120 ∼ 2500 TiN
Table 1.  

Experimental details of the five experimental runs, including the experimental conditions and major results.

Fig. 3.  

(a) Raman spectra of BP-N during the decompression. (b) Measured pressure dependence of Raman shift (run III) of BP-N and (run II) of CG-N compared with calculations and previously reported values[10,13,15,16] of polymeric nitrogen. All measurements were performed during decompression.

Fig. 4.  

(a) The equation of state, (b) formation enthalpy, and (c) energy density of CH-N, BP-N, and cg-N. The values of CH-N, BP-N, and cg-N phases are shown in red triangle, red circle, and blue square, respectively. The red vertical dotted line indicates the pressure (20 GPa), where CH-N becomes stable.

Uddin J, Barone V, Scuseria G E 2006 Mol. Phys. 104 745 DOI: 10.1080/00268970500417325
Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419 DOI: 10.1103/PhysRevB.46.14419
Alemany M M G, Martins J L 2003 Phys. Rev. B 68 024110 DOI: 10.1103/PhysRevB.68.024110
Ma Y M, Oganov A R, Li Z, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501 DOI: 10.1103/PhysRevLett.102.065501
Mattson W D, Sanchez-Portal D, Chiesa S, Martin R M 2004 Phys. Rev. Lett. 93 125501 DOI: 10.1103/PhysRevLett.93.125501
Zahariev F, Hooper J, Alavi S, Zhang F, Woo T K 2007 Phys. Rev. B 75 140101 DOI: 10.1103/PhysRevB.75.140101
Zahariev F, Hu A, Hooper J, Zhang F, Woo T K 2005 Phys. Rev. B 72 214108 DOI: 10.1103/PhysRevB.72.214108
Yao Y, Tse J S, Tanaka K 2008 Phys. Rev. B 77 052103 DOI: 10.1103/PhysRevB.77.052103
Wang X l, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L, Pickard C J, Ma Y M 2012 Phys. Rev. Lett. 109 175502 DOI: 10.1103/PhysRevLett.109.175502
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558 DOI: 10.1038/nmat1146
Lipp M J, Klepeis J P, Baer B J, Cynn H, Evans W J, Iota V, Yoo C S 2007 Phys. Rev. B 76 014113 DOI: 10.1103/PhysRevB.76.014113
Lei L, Tang Q Q, Zhang F, Liu S, Wu B B, Zhou C Y 2020 Chin. Phys. Lett. 37 068101 DOI: 10.1088/0256-307X/37/6/068101
Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502 DOI: 10.1103/PhysRevLett.113.205502
Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001 DOI: 10.1103/PhysRevLett.122.066001
Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001 DOI: 10.1103/PhysRevLett.124.216001
Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2020 Sci. Adv. 6 eaba9206 DOI: 10.1126/sciadv.aba9206
Zou G T, Ma Y Z, Mao H K, Hemley R J, Gramsch S A 2001 Rev. Sci. Instrum. 72 1298 DOI: 10.1063/1.1343864
Dewaele A, Mezouar M, Guignot N, Loubeyre P 2010 Phys. Rev. Lett. 104 255701 DOI: 10.1103/PhysRevLett.104.255701
Hirai S, Kojima Y, Ohfuji H, Nishiyama N, Irifune T, Klemme S, Bromiley G, Attfield J P 2011 Phys. Chem. Miner. 38 631 DOI: 10.1007/s00269-011-0435-2
Akahama Y, Kawamura H 2010 J. Phys.: Conf Ser. 215 012195 DOI: 10.1088/1742-6596/215/1/012195
Shen G, Mao H K 2017 Rep. Prog. Phys. 80 016101 DOI: 10.1088/1361-6633/80/1/016101
Prescher C, Prakapenka V B 2015 High Press. Res. 35 223 DOI: 10.1080/08957959.2015.1059835
Kresse G, Hafner J 1993 Phys. Rev. B 48 13115 DOI: 10.1103/PhysRevB.48.13115
Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169 DOI: 10.1103/PhysRevB.54.11169
Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.3865
Blöchl P E 1994 Phys. Rev. B 50 17953 DOI: 10.1103/PhysRevB.50.17953
Joubert D 1999 Phys. Rev. B 59 1758 DOI: 10.1103/PhysRevB.59.1758
Qian G R, Niu H Y, Hu C H, Oganov A R, Zeng Q F, Zhou H Y 2016 Sci. Rep. 6 25947 DOI: 10.1038/srep25947
Yu S Y, Huang B W, Zeng Q F, Oganov A R, Zhang L T, Frapper G 2017 J. Phys. Chem. C 121 11037 DOI: 10.1021/acs.jpcc.7b00474
Laniel D, Winkler B, Koemets E, Fedotenko T, Bykov M, Bykova E, Dubrovinsky L, Dubrovinskaia N 2019 Nat. Commun. 10 4515 DOI: 10.1038/s41467-019-12530-w
Du H F, Ge Y F, Guo W, Zhu J L, Yao Y G PCCP revision
Eremets M I 1996 High Pressure Experimental Methods Oxford Oxford Univ. Press
Eremets M I, Gavriliuk A G, Serebryanaya N R, Trojan I A, Dzivenko D A, Boehler R, Mao H K, Hemley R J 2004 J. Chem. Phys. 121 11296 DOI: 10.1063/1.1814074
Eremets M I, Hemley R J, Mao H K, Gregoryanz E 2001 Nature 411 170 DOI: 10.1038/35075531
Benchafia E M, Yao Z H, Yuan G, Chou T M, Piao H, Wang X Q, Iqbal Z 2017 Nat. Commun. 8 930 DOI: 10.1038/s41467-017-00060-2
Shi X H, Liu B, Yao Z, Liu B B 2020 Chin. Phys. Lett. 37 047101 DOI: 10.1088/0256-307X/37/4/047101
[1] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[2] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[3] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[4] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[5] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[6] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[7] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[8] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[9] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[10] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[11] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[12] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[15] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
No Suggested Reading articles found!