Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics |
Li Zhang(张莉)1,2, Wenjie Liu(柳文洁)1,2, Jiahao Huang(黄嘉豪)1,2,†, and Chaohong Lee(李朝红)1,2,‡ |
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China |
|
|
Abstract We present a cluster mean-field study for ground-state phase diagram and many-body dynamics of spin-1 bosons confined in a two-chain Bose-Hubbard ladder (BHL). For unbiased BHL, we find superfluid (SF) phase and integer filling Mott insulator (IntMI) phase. For biased BHL, in addition to the SF and IntMI phases, there appears half-integer filling Mott insulator (HIntMI) phase. The phase transition between the SF and IntMI phases can be first order at a part of phase boundaries, while the phase transition between the SF and HIntMI phases is always second order. By tuning the bias energy, we report on the change of the nature of SF-MI phase transitions. Furthermore, we study the effect of the spin-dependent interaction on the many-body population dynamics. The spin-dependent interaction can lead to rich dynamical behaviors, but does not influence the particle transfer efficiency. Our results indicate a way to tune the nature of the SF-MI phase transition and open a new avenue to study the many-body dynamics of spinor bosons in optical lattices.
|
Received: 25 October 2020
Revised: 25 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
67.85.Fg
|
(Multicomponent condensates; spinor condensates)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
Fund: Project supported by the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), the National Natural Science Foundation of China (Grant Nos. 11874434 and 11574405), the Science and Technology Program of Guangzhou, China (Grant No. 201904020024), and the Guangzhou Science and Technology Projects (Grant No. 202002030459). |
Corresponding Authors:
†Corresponding author. E-mail: hjiahao@mail2.sysu.edu.cn ‡Corresponding author. E-mail: lichaoh2@mail.sysu.edu.cn
|
Cite this article:
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红) Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics 2021 Chin. Phys. B 30 026701
|
1 Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108 2 Greiner M, Mandel O, Esslinger T, H\"ansch T W and Bloch I 2002 Nature 415 39 3 Bloch I 2005 Nat. Phys. 1 23 4 Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A and Sen U 2007 Adv. Phys. 56 243 5 Gross C and Bloch I 2017 Science 357 995 6 Lee C 2004 Phys. Rev. Lett. 93 120406 7 Polkovnikov A 2005 Phys. Rev. B 72 161201 8 Kollath C, L\"auchliAM and Altman E 2007 Phys. Rev. Lett. 98 180601 9 Will S, Best T, Schneider U, Hackerm\"uller L, L\"uhmann D S and Bloch I 2010 Nature 465 1476 10 van Oosten D, van der Straten P and Stoof H T C 2001 Phys. Rev. A 63 053601 11 Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 12 Wu B and NiuQ 2000 Phys. Rev. A 61 023402 13 Liu J, Fu L, Ou B Y, Chen S G, Choi D I, Wu B and Niu Q 2002 Phys. Rev. A 66 023404 14 Trimborn F, Witthaut D, Kegel V and Korsch H J 2010 New J. Phys. 12 053010 15 Chen Y A, Huber S D, Trotzky S, Bloch I and Altman E 2011 Nat. Phys. 7 61 16 Kasztelan C, Trotzky S, Chen Y A, Bloch I, McCulloch I P, Schollw\"ock U and Orso G 2011 Phys. Rev. Lett. 106 155302 17 Caballero-Ben\'ítez S F and Paredes R 2012 Phys. Rev. A 85 023605 18 Tschischik W, Haque M and Moessner R 2012 Phys. Rev. A 86 063633 19 Zhong H, Xie Q, Huang J, Qin X, Deng H, Xu J and Lee C 2014 Phys. Rev. A 90 023635 20 Deng H, Dai H, Huang J, Qin X, Xu J, Zhong H, He C and Lee C 2015 Phys. Rev. A 92 023618 21 Ke Y, Qin X, Zhong H, Huang J, He C and Lee C 2015 Phys. Rev. A 91 053409 22 Huang J, Gong P, Qin X, Zhong H and Lee C 2016 Phys. Rev. A 94 023618 23 Landau L D1932 Phys. Z. Sowjet. 2 46 24 Zener C and Fowler R H 1932 Proc. R. Soc. Lond. A 137 696 25 Demler E and Zhou F 2002 Phys. Rev. Lett. 88 163001 26 Imambekov A, Lukin M and Demler E 2003 Rev. Rev. A 68 063602 27 Rizzi M, Rossini D, De Chiara G, Montangero S and Fazio R2005 Rev. Rev. Lett. 95 240404 28 Juliá-D\'íaz B, Mel\'e-Messeguer M, Guilleumas M and Polls A 2009 Rev. Rev. A 80 043622 29 Stamper-Kurn D M and UedaM 2013 Rev. Mod. Phys. 85 1191 30 Tian T, Cai Y, Wu X and Wen Z 2020 SIAM J. Sci. Comput. 42 B983 31 Krutitsky K V and Graham R 2004 Phys. Rev. A 70 063610 32 Krutitsky K V, Timmer M and Graham R 2005 Phys. Rev. A 71 033623 33 Kimura T, Tsuchiya S and Kurihara S 2005 Phys. Rev. Lett. 94 110403 34 Batrouni G G, Rousseau V G and Scalettar R T 2009 Phys. Rev. Lett. 102 140402 35 Jiang J, Zhao L, Wang S T, Chen Z, Tang T, Duan L M and Liu Y 2016 Phys. Rev. A 93 063607 36 Becker C, Soltan-Panahi P, Kronj\"ager J, D\"orscher S, Bongs K and SengstockK 2010 New J. Phys. 12 065025 37 Widera A, Gerbier F, F\"olling S, Gericke T, Mandel O and Bloch I 2005 Phys. Rev. Lett. 95 190405 38 Widera A, Gerbier F, F\"olling S, Gericke T, Mandel O and Bloch I 2006 New J. Phys. 8 152 39 Mahmud K W and Tiesinga E 2013 Phys. Rev. A 88 023602 40 Zhao L, Jiang J, Tang T, Webb M and LiuY 2015 Phys. Rev. Lett. 114 225302 41 Chen Z, Tang T, Austin J, Shaw Z, Zhao L and Liu Y 2019 Phys. Rev. Lett. 123 113002 42 Carvalho D W S, Foerster A and Gusm\ ao M A 2018 Phys. Rev. A 97 033615 43 Buonsante P, Penna V and Vezzani A 2004 Phys. Rev. A 70 061603 44 McIntosh T, Pisarski P, Gooding R J and Zaremba E 2012 Phys. Rev. A 86 013623 45 L\"uhmann D S 2013 Phys. Rev. A 87 043619 46 Zhang L, Qin X, Ke Y and Lee C 2016 Phys. Rev. A 94 023634 47 Pisarski P, Jones R M and Gooding R J 2011 Phys. Rev. A 83 053608 48 Yamamoto D, Danshita I and S\'adeMelo C A R 2012 Phys. Rev. A 85 021601 49 Ho T L 1998 Phys. Rev. Lett. 81 742 50 Tsuchiya S, Kurihara S and Kimura T 2004 Phys. Rev. A 70 043628 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|