Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
|
|
Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings |
Shuai Yue(岳帅)1,2, Xiang-Fa Zhou(周祥发)1,2,†, and Zheng-Wei Zhou(周正威)1,2,‡ |
1 Key Laboratory of Quantum Information, Chinese Academy of Sciences, Hefei 230026, China; 2 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The non-equilibrium dynamics of a one-dimensional (1D) topological system with 3rd-nearest-neighbor hopping has been investigated by analytical and numerical methods. An analytical form of topological defect density under the periodic boundary conditions (PBC) is obtained by using the Landau-Zener formula (LZF), which is consistent with the scaling of defect production provided by the Kibble-Zurek mechanism (KZM). Under the open boundary conditions (OBC), quench dynamics becomes more complicated due to edge states. The behaviors of the system quenching across different phases show that defect production no longer satisfies the KZM paradigm since complicated couplings exist under OBC. Some new dynamical features are revealed.
|
Received: 29 August 2020
Revised: 26 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
64.60.Ht
|
(Dynamic critical phenomena)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.50.Xa
|
(Optical tests of quantum theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974334, 11574294, and 11774332). |
Corresponding Authors:
†Corresponding author. E-mail: xfzhou@ustc.cn ‡Corresponding author. E-mail: zwzhou@ustc.cn
|
Cite this article:
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威) Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings 2021 Chin. Phys. B 30 026402
|
1 Kibble T W 1976 J. Phys. A: Math. Gen. 9 1387 2 Zurek W H 1996 Physics Reports 276 177 3 Kibble T W B and Volovik G 1997 Journal of Experimental and Theoretical Physics Letters 65 102 4 Zurek W H 2009 Phys. Rev. Lett. 102 105702 5 Del'Campo A, De'Chiara G, Morigi G, Plenio M B and Retzker A 2010 Phys. Rev. Lett. 105 075701 6 Zurek W H 1985 Nature 317 505 7 Zurek W H1993 Acta Phys. Polon. 24 1301 8 Damski B 2005 Phys. Rev. Lett. 95 035701 9 Zurek W H, Dorner U and Zoller P 2005 Phys. Rev. Lett. 95 105701 10 Dziarmaga J 2005 Phys. Rev. Lett. 95 245701 11 Polkovnikov A 2005 Phys. Rev. B 72 161201 12 Monaco R, Mygind J, Rivers R and Koshelets V 2009 Phys. Rev. B 80 180501 13 Sadler L, Higbie J, Leslie S, Vengalattore M and Stamper-Kurn D 2006 Nature 443 312 14 Pal V, Tradonsky C, Chriki R, Friesem A A and Davidson N 2017 Phys. Rev. Lett. 119 013902 15 Sacramento P 2016 Phys. Rev. E 93 062117 16 Wang Y 2018 Phys. Rev. E 98 042128 17 Bermudez A, Amico L and Martin-Delgado M 2010 New J. Phys. 12 055014 18 DeGottardi W, Sen D and Vishveshwara S 2011 New J. Phys. 13 065028 19 Lee M, Han S and Choi M S 2015 Phys. Rev. B 92 035117 20 Rajak A and Dutta A 2014 PPhys. Rev. E 89 042125 21 Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 22 Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 23 Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 24 Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 25 Fu L and Kane C L 2007 Phys. Rev. B 76 045302 26 Moore J E 2010 Nature 464 194 27 Hasan M Z and Moore J E 2011 Annu. Rev. Condens. Matter Phys. 2 55 28 Bermudez A, Patane D, Amico L and Martin-Delgado M 2009 Phys. Rev. Lett. 102 135702 29 Sacramento P D 2014 Phys. Rev. E 90 032138 30 Hegde S, Shivamoggi V, Vishveshwara S and Sen D 2015 New J. Phys. 17 053036 31 Tewari S and Sau J D 2012 Phys. Rev. Lett. 109 150408 32 DeGottardi W, Thakurathi M, Vishveshwara S and Sen D 2013 Phys. Rev. B 88 165111 33 Niu Y, Chung S B, Hsu C H, Mandal I, Raghu S and Chakravarty S 2012 Phys. Rev. B 85 035110 34 Wu N 2012 Phys. Lett. A 376 3530 35 Wakatsuki R, Ezawa M and Nagaosa N 2014 Phys. Rev. B 89 174514 36 Wang D, Huang Z and Wu C 2014 Phys. Rev. B 89 174510 37 Celi A, Massignan P, Ruseckas J, Goldman N, Spielman I B, Juzeli\=unas G and Lewenstein M 2014 Phys. Rev. Lett. 112 043001 38 Mancini M, Pagano G, Cappellini G, et al.2015 Science 349 1510 39 Stuhl B, Lu H I, Aycock L, Genkina D and Spielman I 2015 Science 349 1514 40 Luo X W, Zhou X, Li C F, Xu J S, Guo G C and Zhou Z W 2015 Nat. Commun. 6 7704 41 Luo X W, Zhou X, Xu J S, Li C F, Guo G C, Zhang C and Zhou Z W 2017 Nat. Commun. 8 16097 42 Dutt A, Lin Q, Yuan L, Minkov M, Xiao M and Fan S 2020 Science 367 59 43 Zhou X F, Luo X W, Wang S, Guo G C, Zhou X, Pu H and Zhou Z W 2017 Phys. Rev. Lett. 118 083603 44 Landau L D1932 Z. Sowjetunion 2 46 45 Zener C 1932 Proc. R. Soc. Lond. Ser. A 137 696 46 Landau L1932 Zeitschrift fur Physik (Sowjetunion) 2 46 47 Majorana E1932 Il Nuovo Cimento (1924-1942) 9 43 48 Wittig C 2005 J. Phys. Chem. B 109 8428 49 Sengupta K, Sen D and Mondal S 2008 Phys. Rev. Lett. 100 077204 50 Francuz A, Dziarmaga J, Gardas B and Zurek W H 2016 Phys. Rev. B 93 075134 51 Kolodrubetz M, Clark B K and Huse D A 2012 Phys. Rev. Lett. 109 015701 52 Sadhukhan D, Sinha A, Francuz A, Stefaniak J, Rams M M, Dziarmaga J and Zurek W H 2020 Phys. Rev. B 101 144429 53 Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|