Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128503    DOI: 10.1088/1674-1056/abc154
RAPID COMMUNICATION Prev   Next  

Reliability of organic light-emitting diodes in low-temperature environment

Saihu Pan(潘赛虎)1, Zhiqiang Zhu(朱志强)1, Kangping Liu(刘康平)2, Hang Yu(于航)1, Yingjie Liao(廖英杰)2, Bin Wei(魏斌)2, Redouane Borsali3, and Kunping Guo(郭坤平)2,4,
1 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; 2 School of Mechatronic Engineering and Automation, Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, China; 3 Universdity of Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France; 4 London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
Abstract  Organic light-emitting diode (OLED) is an electroluminescent technology that relies on charge-carrier dynamics and is a potential light source for variable environmental conditions. Here, by exploiting a self-developed low-temperature testing system, we investigated the characteristics of hole/electron transport, electro-optic conversion efficiency, and operation lifetime of OLEDs at low-temperature ranging from -40 °C to 0 °C and room temperature (25 °C). Compared to devices operating at room temperature, the carrier transport capability is significantly decreased with reducing temperature, and especially the mobility of the hole-transporting material (HTM) and electron-transporting material (ETM) at -40 °C decreases from 1.16× 10-6 cm2/Vs and 2.60× 10-4 cm2/Vs to 6.91× 10-9 cm2/Vs and 1.44× 10-5 cm2/Vs, respectively. Indeed, the temperature affects differently on the mobilities of HTM and ETM, which favors unbalanced charge-carrier transport and recombination in OLEDs, thereby leading to the maximum current efficiency decreased from 6.46 cdA-1 at 25 °C to 2.74 cdA-1 at -40 °C. In addition, blue fluorescent OLED at -20 °C has an above 56% lifetime improvement (time to 80% of the initial luminance) over the reference device at room temperature, which is attributed to efficiently dissipating heat generated inside the device by the low-temperature environment.
Keywords:  organic light-emitting diodes (OLEDs)      low temperature      reliability      operation lifetime  
Received:  04 August 2020      Revised:  08 September 2020      Accepted manuscript online:  15 October 2020
PACS:  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775130 and 11974236), the Science and Technology Commission of Shanghai Municipality Program, China (Grant Nos. 19DZ2281000 and 17DZ2281000), and the Research Innovation Program for College Graduates of Jiangsu Province, China (Grant Nos. KYCX20_2545 and KYCX20_2549).
Corresponding Authors:  Corresponding author. E-mail: gkp@shu.edu.cn   

Cite this article: 

Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平) Reliability of organic light-emitting diodes in low-temperature environment 2020 Chin. Phys. B 29 128503

[1] Kuribara K, Wang H, Uchiyama N, Fukuda K, Yokota T, Zschieschang U, Jaye C F D, Klauk H, Yamamoto T, Takimiya K, Ikeda M, Kuwabara H, Sekitani T, Loo Y L and Someya T Nat. Commun. 3 723 DOI: 10.1038/ncomms17212012
[2] Zhao W C, Qian D P, Zhang S Q, Li S S, Inganas O, Gao F and Hou J H Adv. Mater. 28 4734 DOI: 10.1002/adma.2016002812016
[3] Ali B A, Moubah R, Boulezhar A and Lassri H Chin. Phys. B 29 098801 DOI: 10.1088/1674-1056/aba5fc2020
[4] Gao J, Yu Q Q, Zhang J, Liu Y, Jia R F, Han J, Wu X M, Hua Y L and Yin S G Chin. Phys. B 26 098507 DOI: 10.1088/1674-1056/26/9/0985072017
[5] Chen G, Si C F, Tang Z Y, Guo K P, Wang T H, Zhang J H and Wei B Synth. Met. 222 293 DOI: 10.1016/j.synthmet.2016.11.0072016
[6] Park J and Kawakami Y J. Disp. Technol. 2 333 DOI: 10.1109/JDT.2006.8851442006
[7] Zufle S, Neukom M T, Altazin S, Zinggeler M, Chrapa M, Offermans T and Ruhstaller B Adv. Energy Mater. 5 1500835 DOI: 10.1002/aenm.2015008352015
[8] Chung Y H, Sheng L, Xing X, Zheng L L, Bian M Y, Chen Z J, Xiao L X and Gong Q H J. Mater. Chem. C 3 1794 DOI: 10.1039/C4TC02669A2015
[9] Cm K, Kronenberg N M, Murawski C, Yoshida K, Deng Y L, Berz C, Li W B, Wei M J, Idw S and Gather M C Adv. Opt. Mater. 6 1800496 DOI: 10.1002/adom.2018004962018
[10] Park S R, Seo J S, Ahn Y, Jn H L and Suh M C Org. Electron. 63 194 DOI: 10.1016/j.orgel.2018.09.0092018
[11] Kwak J, Lyu Y Y, Noh S, Lee H, Park M, Choi B, Char K and Lee C Thin Solid Films 520 7157 DOI: 10.1016/j.tsf.2012.07.1302012
[12] Huang X L, Zou J H, Liu J Z, Jin G, Li J B, Yao S L, Peng J B, Cao Y and Zhu X H Org. Electron. 58 139 DOI: 10.1016/j.orgel.2018.04.0122018
[13] Kim J H, Chen Y, Liu R and So F Org. Electron. 15 2381 DOI: 10.1016/j.orgel.2014.07.0122014
[14] Xu J J, Wang Y L, Chen Q, Lin Y W, Shan H Q, Val R and Xu Z X J. Mater. Chem. C 4 7377 DOI: 10.1039/C6TC01864E2016
[15] Tsang D P K, Matsushima T and Adachi C Sci. Rep. 6 22463 DOI: 10.1038/srep224632016
[16] Zheng L P, Xu J J, Feng Y M, Shan H Q, Fang G J and Xu Z X J. Mater. Chem. C 6 11471 DOI: 10.1039/C8TC00960K2018
[17] Berleb S, Mückl A G, Brütting W and Schwoerer M Synth. Met. 111 341 DOI: 10.1016/S0379-6779(99)00361-62000
[18] Yuan C, Guan M, Zhang Y, Li Y Y, Liu S J and Zeng Y P Appl. Surf. Sci. 413 191 DOI: 10.1016/j.apsusc.2017.04.0412017
[19] Tao P, Li W L, Zhang J, Guo S, Zhao Q, Wang H, Wei B, Liu S J, Zhou X H and Yu Q Adv. Funct. Mater. 26 881 DOI: 10.1002/adfm.2015038262016
[20] Si C F, Li Z F, Guo K P, Lv X, Pan S H, Chen G, Hao Y Y and Wei B Dyes Pigm. 148 329 DOI: 10.1016/j.dyepig.2017.09.0272018
[21] Ye Z H, Ling Z T, Chen M Y, Y, J L, W, S L, Zheng Y Q, Wei B, Li C, Chen G and Shi Y RSC Adv. 9 6881 DOI: 10.1039/C8RA10658D2019
[22] Pan S H, Liu K P, Ye Y T, Gao X C, Tang Z Y, Ye Z H, Y, N J, Guo K P and Wei B Org. Electron. 78 105577 DOI: 10.1016/j.orgel.2019.1055772020
[23] Al-Absi M A and As-Sabban I A Analog Integr. Circuits Process 81 23 DOI: 10.1007/s10470-014-0319-82014
[24] Carbone A, Pennetta C and Reggiani L Appl. Phys. Lett. 95 233303 DOI: 10.1063/1.32717692009
[25] Pal A J, Osterbacka R, Kallman K M and Stubb H Appl. Phys. Lett. 71 228 DOI: 10.1063/1.1199171997
[26] Guo K P, Wang S L, Si C F, Wang T H, Zhang J, Chen C B, Jing Y L, Yang L Q, Chen G and Wei B Phys. Status Solidi A 214 1600689 DOI: 10.1002/pssa.2016006892017
[27] Guo K P, Chen C B, Sun C, Peng C Y, Yang L Q, Cai M, Zhang X W and Wei B J. Phys. D: Appl. Phys. 49 235105 DOI: 10.1088/0022-3727/49/23/2351052016
[28] Zhang F L, Si C F, Dong X B, Wei D H, Yang X, Guo K P, Wei B, Li Z Y, Zhang C, Li S Z, Zhai B and Cao G X J. Mater. Chem. C 5 9146 DOI: 10.1039/C7TC02420G2017
[29] Zhang Y, Lee J and Forrest S R Nat. Commun. 5 5008 DOI: 10.1038/ncomms60082014
[30] Guo K P, Li W L, Zhang J H, Zhang X W, Wang X, Chen G, Xu T, Yang L Q, Zhu W Q and Wei B RSC Adv. 6 55626 DOI: 10.1039/C6RA08191F2016
[31] Zhang J P, Li W B, Cheng G L, Chen X, Wu H and MHH S J. Lumines. 154 491 DOI: 10.1016/j.jlumin.2014.05.0242014
[32] Weaver M S, LA M, Rajan K, MA R, JA S, JJ B, PE B, GL G, ME G, PM M, Hall M, Mast E, Bonham C, Bennett W and Zumhoff M Appl. Phys. Lett. 81 2929 DOI: 10.1063/1.15148312002
[33] Zhao L F, Kwangdong R, Sara K, Khaled A K, Samik J, Stephen B, Seth R M, Claire G and Barry P R Adv. Mater. 32 2000752 DOI: 10.1002/adma.2020007522020
[34] Chung S J, Lee J H, Jaewook J, Jang-Joo K and Yongtaek H Appl. Phys. Lett. 94 253302 DOI: 10.1063/1.31545572009
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[3] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[4] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[5] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[6] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[7] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[8] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[9] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[10] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[11] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[12] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[13] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[14] Advanced high-pressure transport measurement system integrated with low temperature and magnetic field
Jing Guo(郭静), Qi Wu(吴奇), Liling Sun(孙力玲). Chin. Phys. B, 2018, 27(7): 077402.
[15] Optical properties of wavelength-tunable green-emitting color conversion glass ceramics
Yang Li(李杨), Li-Li Hu(胡丽丽), Bo-Bo Yang(杨波波), Ming-Ming Shi(石明明), Jun Zou(邹军). Chin. Phys. B, 2017, 26(12): 128103.
No Suggested Reading articles found!