|
|
Reliability of organic light-emitting diodes in low-temperature environment |
Saihu Pan(潘赛虎)1, Zhiqiang Zhu(朱志强)1, Kangping Liu(刘康平)2, Hang Yu(于航)1, Yingjie Liao(廖英杰)2, Bin Wei(魏斌)2, Redouane Borsali3, and Kunping Guo(郭坤平)2,4,† |
1 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; 2 School of Mechatronic Engineering and Automation, Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, China; 3 Universdity of Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France; 4 London Centre for Nanotechnology, University College London, London WC1H 0AH, UK |
|
|
Abstract Organic light-emitting diode (OLED) is an electroluminescent technology that relies on charge-carrier dynamics and is a potential light source for variable environmental conditions. Here, by exploiting a self-developed low-temperature testing system, we investigated the characteristics of hole/electron transport, electro-optic conversion efficiency, and operation lifetime of OLEDs at low-temperature ranging from -40 °C to 0 °C and room temperature (25 °C). Compared to devices operating at room temperature, the carrier transport capability is significantly decreased with reducing temperature, and especially the mobility of the hole-transporting material (HTM) and electron-transporting material (ETM) at -40 °C decreases from 1.16× 10-6 cm2/Vs and 2.60× 10-4 cm2/Vs to 6.91× 10-9 cm2/Vs and 1.44× 10-5 cm2/Vs, respectively. Indeed, the temperature affects differently on the mobilities of HTM and ETM, which favors unbalanced charge-carrier transport and recombination in OLEDs, thereby leading to the maximum current efficiency decreased from 6.46 cdA-1 at 25 °C to 2.74 cdA-1 at -40 °C. In addition, blue fluorescent OLED at -20 °C has an above 56% lifetime improvement (time to 80% of the initial luminance) over the reference device at room temperature, which is attributed to efficiently dissipating heat generated inside the device by the low-temperature environment.
|
Received: 04 August 2020
Revised: 08 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
07.20.Mc
|
(Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)
|
|
81.40.Rs
|
(Electrical and magnetic properties related to treatment conditions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775130 and 11974236), the Science and Technology Commission of Shanghai Municipality Program, China (Grant Nos. 19DZ2281000 and 17DZ2281000), and the Research Innovation Program for College Graduates of Jiangsu Province, China (Grant Nos. KYCX20_2545 and KYCX20_2549). |
Corresponding Authors:
†Corresponding author. E-mail: gkp@shu.edu.cn
|
Cite this article:
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平) Reliability of organic light-emitting diodes in low-temperature environment 2020 Chin. Phys. B 29 128503
|
[1] Kuribara K, Wang H, Uchiyama N, Fukuda K, Yokota T, Zschieschang U, Jaye C F D, Klauk H, Yamamoto T, Takimiya K, Ikeda M, Kuwabara H, Sekitani T, Loo Y L and Someya T Nat. Commun. 3 723 DOI: 10.1038/ncomms17212012 [2] Zhao W C, Qian D P, Zhang S Q, Li S S, Inganas O, Gao F and Hou J H Adv. Mater. 28 4734 DOI: 10.1002/adma.2016002812016 [3] Ali B A, Moubah R, Boulezhar A and Lassri H Chin. Phys. B 29 098801 DOI: 10.1088/1674-1056/aba5fc2020 [4] Gao J, Yu Q Q, Zhang J, Liu Y, Jia R F, Han J, Wu X M, Hua Y L and Yin S G Chin. Phys. B 26 098507 DOI: 10.1088/1674-1056/26/9/0985072017 [5] Chen G, Si C F, Tang Z Y, Guo K P, Wang T H, Zhang J H and Wei B Synth. Met. 222 293 DOI: 10.1016/j.synthmet.2016.11.0072016 [6] Park J and Kawakami Y J. Disp. Technol. 2 333 DOI: 10.1109/JDT.2006.8851442006 [7] Zufle S, Neukom M T, Altazin S, Zinggeler M, Chrapa M, Offermans T and Ruhstaller B Adv. Energy Mater. 5 1500835 DOI: 10.1002/aenm.2015008352015 [8] Chung Y H, Sheng L, Xing X, Zheng L L, Bian M Y, Chen Z J, Xiao L X and Gong Q H J. Mater. Chem. C 3 1794 DOI: 10.1039/C4TC02669A2015 [9] Cm K, Kronenberg N M, Murawski C, Yoshida K, Deng Y L, Berz C, Li W B, Wei M J, Idw S and Gather M C Adv. Opt. Mater. 6 1800496 DOI: 10.1002/adom.2018004962018 [10] Park S R, Seo J S, Ahn Y, Jn H L and Suh M C Org. Electron. 63 194 DOI: 10.1016/j.orgel.2018.09.0092018 [11] Kwak J, Lyu Y Y, Noh S, Lee H, Park M, Choi B, Char K and Lee C Thin Solid Films 520 7157 DOI: 10.1016/j.tsf.2012.07.1302012 [12] Huang X L, Zou J H, Liu J Z, Jin G, Li J B, Yao S L, Peng J B, Cao Y and Zhu X H Org. Electron. 58 139 DOI: 10.1016/j.orgel.2018.04.0122018 [13] Kim J H, Chen Y, Liu R and So F Org. Electron. 15 2381 DOI: 10.1016/j.orgel.2014.07.0122014 [14] Xu J J, Wang Y L, Chen Q, Lin Y W, Shan H Q, Val R and Xu Z X J. Mater. Chem. C 4 7377 DOI: 10.1039/C6TC01864E2016 [15] Tsang D P K, Matsushima T and Adachi C Sci. Rep. 6 22463 DOI: 10.1038/srep224632016 [16] Zheng L P, Xu J J, Feng Y M, Shan H Q, Fang G J and Xu Z X J. Mater. Chem. C 6 11471 DOI: 10.1039/C8TC00960K2018 [17] Berleb S, Mückl A G, Brütting W and Schwoerer M Synth. Met. 111 341 DOI: 10.1016/S0379-6779(99)00361-62000 [18] Yuan C, Guan M, Zhang Y, Li Y Y, Liu S J and Zeng Y P Appl. Surf. Sci. 413 191 DOI: 10.1016/j.apsusc.2017.04.0412017 [19] Tao P, Li W L, Zhang J, Guo S, Zhao Q, Wang H, Wei B, Liu S J, Zhou X H and Yu Q Adv. Funct. Mater. 26 881 DOI: 10.1002/adfm.2015038262016 [20] Si C F, Li Z F, Guo K P, Lv X, Pan S H, Chen G, Hao Y Y and Wei B Dyes Pigm. 148 329 DOI: 10.1016/j.dyepig.2017.09.0272018 [21] Ye Z H, Ling Z T, Chen M Y, Y, J L, W, S L, Zheng Y Q, Wei B, Li C, Chen G and Shi Y RSC Adv. 9 6881 DOI: 10.1039/C8RA10658D2019 [22] Pan S H, Liu K P, Ye Y T, Gao X C, Tang Z Y, Ye Z H, Y, N J, Guo K P and Wei B Org. Electron. 78 105577 DOI: 10.1016/j.orgel.2019.1055772020 [23] Al-Absi M A and As-Sabban I A Analog Integr. Circuits Process 81 23 DOI: 10.1007/s10470-014-0319-82014 [24] Carbone A, Pennetta C and Reggiani L Appl. Phys. Lett. 95 233303 DOI: 10.1063/1.32717692009 [25] Pal A J, Osterbacka R, Kallman K M and Stubb H Appl. Phys. Lett. 71 228 DOI: 10.1063/1.1199171997 [26] Guo K P, Wang S L, Si C F, Wang T H, Zhang J, Chen C B, Jing Y L, Yang L Q, Chen G and Wei B Phys. Status Solidi A 214 1600689 DOI: 10.1002/pssa.2016006892017 [27] Guo K P, Chen C B, Sun C, Peng C Y, Yang L Q, Cai M, Zhang X W and Wei B J. Phys. D: Appl. Phys. 49 235105 DOI: 10.1088/0022-3727/49/23/2351052016 [28] Zhang F L, Si C F, Dong X B, Wei D H, Yang X, Guo K P, Wei B, Li Z Y, Zhang C, Li S Z, Zhai B and Cao G X J. Mater. Chem. C 5 9146 DOI: 10.1039/C7TC02420G2017 [29] Zhang Y, Lee J and Forrest S R Nat. Commun. 5 5008 DOI: 10.1038/ncomms60082014 [30] Guo K P, Li W L, Zhang J H, Zhang X W, Wang X, Chen G, Xu T, Yang L Q, Zhu W Q and Wei B RSC Adv. 6 55626 DOI: 10.1039/C6RA08191F2016 [31] Zhang J P, Li W B, Cheng G L, Chen X, Wu H and MHH S J. Lumines. 154 491 DOI: 10.1016/j.jlumin.2014.05.0242014 [32] Weaver M S, LA M, Rajan K, MA R, JA S, JJ B, PE B, GL G, ME G, PM M, Hall M, Mast E, Bonham C, Bennett W and Zumhoff M Appl. Phys. Lett. 81 2929 DOI: 10.1063/1.15148312002 [33] Zhao L F, Kwangdong R, Sara K, Khaled A K, Samik J, Stephen B, Seth R M, Claire G and Barry P R Adv. Mater. 32 2000752 DOI: 10.1002/adma.2020007522020 [34] Chung S J, Lee J H, Jaewook J, Jang-Joo K and Yongtaek H Appl. Phys. Lett. 94 253302 DOI: 10.1063/1.31545572009 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|