INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Tail-structure regulated phase behaviors of a lipid bilayer |
Wenwen Li(李文文)1,†, Zhao Lin(林召)1,2,†, Bing Yuan(元冰)1,‡, and Kai Yang(杨恺)1,\ccclink |
1 Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China; 2 School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China |
|
|
Abstract Lateral heterogeneity of a cell membrane, including the formation of lipid raft-like clusters and the inter-leaflet coupling of specific phase domains, is crucial for cellular functions such as membrane trafficking and transmembrane signaling. However, the wide diversity in lipid species and the consequent complexity in lipid-lipid interplays hinder our understanding of the underlying mechanism. In this work, with coarse-grained molecular dynamics simulations, the effect of lipid tail structures on the phase behavior of a model ternary lipid membrane was systematically explored. A serial of 27 lipid membrane systems consisting of saturated, unsaturated lipids, and cholesterol (Chol) molecules, at a fixed molar ratio of 4:4:2 while varying in lipid structures including tail length, unsaturation degree, and/or position of unsaturated atoms, were constructed. These structural factors were found to exert sophisticated influences on packing states of the constituent molecules, especially Chol, in a bilayer, and modulate the complicated entropy-enthalpy competition of the membrane system accordingly. Specifically, an appropriate difference in effective tail length and distinct feature of the tail ends between the saturated and unsaturated lipid compositions promised an enhanced phase separation of the membrane into the Chol-rich Lo and Chol-poor Ld phase domains, with a full inter-leaflet coupling of each domain. Our results provide insights into the lipid organizations and segregations of the cellular plasma membrane.
|
Received: 01 June 2020
Revised: 09 July 2020
Accepted manuscript online: 07 August 2020
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
87.14.Cc
|
(Lipids)
|
|
87.16.D-
|
(Membranes, bilayers, and vesicles)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21422404, 21774092, U1532108, 21728502, and U1932121), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. K Yang and B Yuan acknowledge the support of the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20171207 and BK20171210). Z Lin thanks the support of Undergraduate Training Program for Innovation and Entrepreneurship of Soochow University, China (Grant No. 201810285023Z). |
Corresponding Authors:
†These authors contributed equally to this work. ‡Corresponding author. E-mail: yuanbing@suda.edu.cn §Corresponding author. E-mail: yangkai@suda.edu.cn
|
Cite this article:
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink Tail-structure regulated phase behaviors of a lipid bilayer 2020 Chin. Phys. B 29 128701
|
[1] Singer S J and Nicolson G L Science 175 720 DOI: 10.1126/science.175.4023.7201972 [2] Harayama T and Riezman H Nat. Rev. Mol. Cell Biol. 19 281 DOI: 10.1038/nrm.2017.1382018 [3] Yang Y, Lee M and Fairn G D J. Biol. Chem. 293 6230 DOI: 10.1074/jbc.R117.0005822018 [4] Ma L, Li Y, Li M and Hu S Chin. Phys. B 26 128708 DOI: 10.1088/1674-1056/26/12/1287082017 [5] Xu C, Ma W, Wang K, He K, Chen Z, Liu J, Yang K and Yuan B J. Phys. Chem. Lett. 11 4834 DOI: 10.1021/acs.jpclett.0c011692020 [6] Cheng X, Zhao L, Kai Y and Bing Y Acta Phys. Sin. 69 108701 (in Chinese) DOI: 10.7498/aps.69.202001662020 [7] Deng Z, Lu X, Xu C, Yuan B and Yang K Soft Matter 16 3498 DOI: 10.1039/D0SM00046A2020 [8] Simons K and Ikonen E Nature 387 569 DOI: 10.1038/424081997 [9] Sezgin E, Levental I, Mayor S and Eggeling C Nat. Rev. Mol. Cell Bio. 18 361 DOI: 10.1038/nrm.2017.162017 [10] Lingwood D and Simons K Science 327 46 DOI: 10.1126/science.11746212010 [11] Liu J J, Chang Q, Bao M M, Yuan B, Yang K and Ma Y Q Chin. Phys. B 26 098102 DOI: 10.1088/1674-1056/26/9/0981022017 [12] Ding H, Li J, Chen N, Hu X, Yang X, Guo L, Li Q, Zuo X, Wang L, Ma Y and Fan C ACS Cent. Sci. 4 1344 DOI: 10.1021/acscentsci.8b003832018 [13] Yang K and Ma Y Q Nat. Nanotechnol. 5 579 DOI: 10.1038/nnano.2010.1412010 [14] Lu X, Xu P, Ding H M, Yu Y S, Huo D and Ma Y Q Nat. Commun. 10 4520 DOI: 10.1038/s41467-019-12470-52019 [15] Li M, Ding H, Lin M, Yin F, Song L, Mao X, Li F, Ge Z, Wang L, Zuo X, Ma Y and Fan C J. Am. Chem. Soc. 141 18910 DOI: 10.1021/jacs.9b110152019 [16] Bennett W F D and Tieleman D P Biochim. Biophys. Acta 1828 1765 DOI: 10.1016/j.bbamem.2013.03.0042013 [17] Ingolfsson H I, Melo M N, Van Eerden F J, Arnarez C, Lopez C A, Wassenaar T A, Periole X, De Vries A H, Tieleman D P and Marrink S J J. Am. Chem. Soc. 136 14554 DOI: 10.1021/ja507832e2014 [18] Van Meer G, Voelker D R and Feigenson G W Nat. Rev. Mol. Cell Biol. 9 112 DOI: 10.1038/nrm23302008 [19] Ackerman D G and Feigenson G W Essays Biochem. 57 33 DOI: 10.1042/bse05700332015 [20] Baumgart T, Hess S T and Webb W W Nature 425 821 DOI: 10.1038/nature020132003 [21] Rog T, Pasenkiewiczgierula M, Vattulainen I and Karttunen M Biophys. J. 92 3346 DOI: 10.1529/biophysj.106.0954972007 [22] Menkes J H, Alter M, Steigleder G K, Weakley D R and Sung J H1962 A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration, Pediatrics, 1962 May 29, pp. 764-79 PMID: 14472668 [23] Stillwell W and Wassall S R Chem. Phys. Lipids 126 1 DOI: 10.1016/S0009-3084(03)00101-42003 [24] Pitman M C, Suits F, Mackerell A D and Feller S E Biochemistry 43 15318 DOI: 10.1021/bi048231w2004 [25] Konyakhina T M and Feigenson G W Biochim. Biophys. Acta 1858 153 DOI: 10.1016/j.bbamem.2015.10.0162016 [26] Eldho N V, Feller S E, Tristramnagle S, Polozov I V and Gawrisch K J. Am. Chem. Soc. 125 6409 DOI: 10.1021/ja029029o2003 [27] Goh S L, Amazon J J and Feigenson G W Biophys. J. 104 853 DOI: 10.1016/j.bpj.2013.01.0032013 [28] Konyakhina T M, Wu J, Mastroianni J D, Heberle F A and Feigenson G W Biochim. Biophys. Acta 1828 2204 DOI: 10.1016/j.bbamem.2013.05.0202013 [29] Liu J, Xiao S, Li J, Yuan B, Yang K and Ma Y Biochim. Biophys. Acta 1860 2234 DOI: 10.1016/j.bbamem.2018.09.0072018 [30] Lu X, Liu J, Gou L, Li J, Yuan B, Yang K and Ma Y Adv. Healthc. Mater. 8 1801521 DOI: 10.1002/adhm.v8.92019 [31] Ding H, Tian W and Ma Y ACS Nano 6 1230 DOI: 10.1021/nn20388622012 [32] Deng Z, Li J, Yuan B and Yang K Commun. Theor. Phys. 71 887 DOI: 10.1088/0253-6102/71/7/8872019 [33] Ji Q, Yuan B, Lu X, Yang K and Ma Y Small 12 1140 DOI: 10.1002/smll.2015018852016 [34] Lu X, Liu J, Gou L, Li J, Yuan B, Yang K and Ma Y Adv. Healthc. Mater. 8 1801521 DOI: 10.1002/adhm.v8.92019 [35] Xiao S, Lu X, Gou L, Li J l, Ma Y, Liu J, Yang K and Yuan B Carbon 149 248 DOI: 10.1016/j.carbon.2019.04.0672019 [36] Marrink S J, De Vries, H A and Mark A E J. Phys. Chem. B 108 750 DOI: 10.1021/jp036508g2004 [37] Risselada H J and Marrink S J Proc. Natl. Acad. Sci. USA 105 17367 DOI: 10.1073/pnas.08075271052008 [38] Koldso H, Shorthouse D, Helie J and Sansom M S P Plos. Comput. Biol. 10 e1003911 DOI: 10.1371/journal.pcbi.10039112014 [39] Fowler P W, Williamson J J, Sansom M S P and Olmsted P D J. Am. Chem. Soc. 138 11633 DOI: 10.1021/jacs.6b048802016 [40] Yang K, Yang R, Tian X, He K, Filbrun S L, Fang N, Ma Y and Yuan B Phys. Chem. Chem. Phys. 20 28241 DOI: 10.1039/C8CP05710A2018 [41] Wassenaar T A, Ingolfsson H I, Bockmann R A, Tieleman D P and Marrink S J J. Chem. Theory Comput. 11 2144 DOI: 10.1021/acs.jctc.5b002092015 [42] Melo M N, Ingolfsson H I and Marrink S J J. Chem. Phys. 143 243152 DOI: 10.1063/1.49377832015 [43] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and De Vries A H J. Phys. Chem. B 111 7812 DOI: 10.1021/jp071097f2007 [44] Weiner M D and Feigenson G W J. Chem. Phys. B 122 8193 DOI: 10.1021/acs.jpcb.8b039492018 [45] Ackerman D G and Feigenson G W J. Phys. Chem. B 119 4240 DOI: 10.1021/jp511083z2015 [46] Perlmutter J D and Sachs J N J. Am. Chem. Soc. 133 6563 DOI: 10.1021/ja106626r2011 [47] Bussi G, Donadio D and Parrinello M J. Chem. Phys. 126 014101 DOI: 10.1063/1.24084202007 [48] Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A and Haak J R J. Chem. Phys. 81 3684 DOI: 10.1063/1.4481181984 [49] Parrinello M and Rahman A J. Appl. Phys. 52 7182 DOI: 10.1063/1.3286931981 [50] Ting F Comput. Simul. 23 89 DOI: 10.1080/036109194088131572006 [51] Bennett W F D, Shea J and Tieleman D P Biophys. J. 114 2595 DOI: 10.1016/j.bpj.2018.04.0222018 [52] Thallmair S, Ingolfsson H I and Marrink S J J. Phys. Chem. Lett. 9 5527 DOI: 10.1021/acs.jpclett.8b018772018 [53] Davis R S, Kumar P B S, Sperotto M M and Laradji M J. Chem. Phys. B 117 4072 DOI: 10.1021/jp40006862013 [54] Berkowitz M L Biochim. Biophys. Acta 1788 86 DOI: 10.1016/j.bbamem.2008.09.0092009 [55] Rog T, Pasenkiewiczgierula M, Vattulainen I and Karttunen M Biochim. Biophys. Acta 1788 97 DOI: 10.1016/j.bbamem.2008.08.0222009 [56] Javanainen M and Martinez-Seara H Phys. Chem. Chem. Phys. 21 11660 DOI: 10.1039/C9CP02022E2019 [57] Williamson J J and Olmsted P D Biophys. J 108 1963 DOI: 10.1016/j.bpj.2015.03.0162015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|