INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system |
Zhi-Yun Lu(鲁智云)1, Yong-Kui Wang(王永奎)1, Shuai Fang(房帅)1, Zheng-Hao Cai(蔡正浩)1, Zhan-Dong Zhao(赵占东)1, Chun-Xiao Wang(王春晓)1, Hong-An Ma(马红安)1,†, Liang-Chao Chen(陈良超)2,‡, and Xiao-Peng Jia(贾晓鹏)1 § |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract We report the effects of MgSiO3 addition on the crystal growth and characteristics of type-Ib diamonds synthesized in Fe-Ni-C system. The experiments were carried out with pressure at 5.5 GPa, temperature at 1385 °C-1405 °C, and duration of 23.1 h. As MgSiO3 increases from 0.0 wt% to 3.0 wt%, the diamond growth temperature increases from 1385 °C to 1405 °C, the addition of MgSiO3 and the movement of P-T diagram toward the higher temperature direction result in a series of effects to the Fe-Ni-C system and crystal growth. Firstly, it increases the content of metastable recrystallized graphite and accelerates the competition with the carbon source needed for diamond growth, thus causing the decreased crystal growth rate. Diamond crystals exhibit the combination form of {111}, {100}, {113}, and {110} sectors, the decreased {100} and {113} sectors, dominated {111} sector are all attributed to the higher growth rate in [100] direction caused by the synergy of MgSiO3 and the movement of P-T diagram. The higher growth rate in [100] direction also increases the metal catalyst and graphite inclusions and leads to the increase of residual tensile stress on the crystal surface. Accompanying with the high growth rate, a higher dissolution rate along [100] and [113] directions than [111] direction occurs at the microstructure and forms the significantly developed (111) stepped growth layer. In addition to the movement of P-T diagram, the addition of MgSiO3 poisons the catalyst and increases the nitrogen content of diamond from 120 ppm to 227 ppm.
|
Received: 04 July 2020
Revised: 23 August 2020
Accepted manuscript online: 14 September 2020
|
PACS:
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.05.ug
|
(Diamond)
|
|
91.60.-x
|
(Physical properties of rocks and minerals)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 51872112, and 11804305), the China Postdoctoral Science Foundation (Grant No. 2017M622360), and the Project of Jilin Science and Technology Development Plan (Grant No. 20180201079GX). |
Corresponding Authors:
†Corresponding author. E-mail: maha@jlu.edu.cn ‡Corresponding author. E-mail: chenlc@zzu.edu.cn §Corresponding author. E-mail: jiaxp@jlu.edu.cn
|
Cite this article:
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏) Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system 2020 Chin. Phys. B 29 128103
|
[1] Smith E M, Shirey S B and Wang W Y Gems Gemol. 53 388 DOI: 10.5741/GEMS.53.4.3882017 [2] Ogden J Diamonds: An Early History of the King of Gems (New Haven: Yale University Press) pp. 1-20 DOI: 10.12987/97803002355172018 [3] Sally E M, Shigley J E and Breeding C M Gems Gemol. 53 262 DOI: 10.5741/GEMS.53.3.2622017 [4] Wang W Y, Moses T, Linares R C, Shigley J E, Hall M and Butler J E Gems Gemol. 39 268 DOI: 10.5741/GEMS.39.4.2682003 [5] Li Y, Wang Y, Li S S, Li Z B, Luo K W, Ran M W and Song M S Acta Phys. Sin. 68 098101 (in Chinese) DOI: 10.7498/aps.68.201901332019 [6] Fan X H, Xu B, Niu Z, Zhai T G and Tian B Chin. Phys. Lett. 29 048102 DOI: 10.1088/0256-307X/29/4/0481022012 [7] He X M, Du M Y, Zhang Y H, Chu P K and Guo Q F JOM 71 2531 DOI: 10.1007/s11837-019-03592-82019 [8] Wang W Y and Moses T2016 Gems. Gemol. 52 101 [9] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X and Ma H A Cryst. Growth Des. 11 3844 DOI: 10.1021/cg200387n2011 [10] Tian Y, Jia X P, Zang C Y, Li S S, Xiao H Y, Zhang Y F, Huang G F, Li R, Han Q G and Ma L Q Chin. Sci. Bull. 54 1459 DOI: 10.1007/s11434-009-0211-62009 [11] Chen L C, Miao X Y, Ma H A, Guo L S, Wang Z K, Yang Z Q, Fang C and Jia X P Crystengcomm 20 7164 DOI: 10.1039/C8CE01533C2018 [12] Huang G F, Jia H S, Li S S, Zhang Y F, Li Y, Zhao M and Ma H A Chin. Phys. B 19 118101 DOI: 10.1088/1674-1056/19/11/1181012010 [13] Smith E M, Kopylova M G, Frezzotti M L and Afanasiev V P Lithos 216 106 DOI: 10.1007/s11434-009-0211-62015 [14] Stachel T and Luth R W Lithos 220 200 DOI: 10.1007/s11434-009-0211-62015 [15] Dasgupta R and Hirschmann M M Earth Planet. Sci. Lett. 298 1 DOI: 10.1016/j.epsl.2010.06.0392010 [16] Cartigny P, Harris J W and Javoy M Earth Planet. Sci. Lett. 185 85 DOI: 10.1016/S0012-821X(00)00357-52001 [17] Pal'yanov Y N, Sokol A G and Sobolev N V2005 Russ. Geol. Geophys. 46 1271 [18] Sokol A and Pal'yanov Y N Contrib. Mineral. Petrol. 155 33 DOI: 10.1007/s00410-007-0221-92008 [19] Fedortchouk Y, Liebske C and McCammon C Earth Planet. Sci. Lett. 506 493 DOI: 10.1016/j.epsl.2018.11.0252019 [20] Khokhryakov A F and Pal'yanov Y N American Mineralogist 95 1508 DOI: 10.2138/am.2010.34512010 [21] Palyanov Y N, Sokol A, Khokhryakov A and Kruk A Russ. Geol. Geophys. 56 196 DOI: 10.1016/j.rgg.2015.01.0132015 [22] Palyanov Y N, Kupriyanov I N, Khokhryakov A F and Borzdov Y M Crystengcomm 19 4459 DOI: 10.1039/C7CE01083D2017 [23] Ding L Y, Ma H A, Fang S, Yang Z Q, Chen L C, Wang F B and Jia X P J. Cryst. Growth 533 125463 DOI: 10.1016/j.jcrysgro.2019.1254632020 [24] Palyanov Y N, Sokol A G, Tomilenko A A and Sobolev N V Eur. J. Mineral. 17 207 DOI: 10.1127/0935-1221/2005/0017-02072005 [25] Shatskiy A, Borzdov Y M, Sokol A G, Katsura T and Palyanov Y N2008 International Kimberlite Conference: Extended Abstracts, Shatskiy A, Borzdov Y M, Sokol A G, Katsura T and Palyanov Y N 2008 International Kimberlite Conference: Extended Abstracts, August 10-15, 2008, Frankfurt, Germany, p. 1 [26] Bataleva Y, Palyanov Y, Borzdov Y, Novoselov I and Bayukov O Minerals 8 522 DOI: 10.3390/min81105222018 [27] Jacob D, Kronz A and Viljoen K Contrib. Mineral. Petrol. 146 566 DOI: 10.1007/s00410-003-0518-22004 [28] Bulanova G J. Geochem. Explor. 53 1 DOI: 10.1016/0375-6742(94)00016-51995 [29] Garanin V and Kudryavtseva G Lithos 25 211 DOI: 10.1016/0024-4937(90)90016-T1990 [30] Zedgenizov D, Bogush I, Shatsky V, Kovalchuk O, Ragozin A and Kalinina V Minerals 9 741 DOI: 10.3390/min91207412019 [31] Zang C Y, Jia X P, Ma H A, Tian Y and Xiao H Y Chin. Phys. Lett. 22 2415 DOI: 10.1088/0256-307X/22/9/0762005 [32] Fedortchouk Y and Canil D Eur. J. Mineral. 21 623 DOI: 10.1127/0935-1221/2009/0021-19292009 [33] Hao Z Y, Chen Y F and Chen L Z J. Cryst. Growth 135 370 DOI: 10.1016/0022-0248(94)90766-81994 [34] Smith W, Sorokin P, Gelles I and Lasher G Phys. Rev. 115 1546 DOI: 10.1103/PhysRev.115.15461959 [35] Fallon P, Brown L, Barry J and Bruley J Philos. Mag. A 72 21 DOI: 10.1080/014186195082395801995 [36] Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F and Kanda H Diam. Relat. Mat. 14 1932 DOI: 10.1016/j.diamond.2005.06.0412005 [37] Fang S, Ma H A, Cai Z H, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L C and Jia X P Crystengcomm 22 602 DOI: 10.1039/C9CE01759C2020 [38] Palyanov Y N, Borzdov Y M, Kupriyanov I N and Khokhryakov A F Cryst. Growth Des. 12 5571 DOI: 10.1021/cg301111g2012 [39] Mysen B Prog. Earth Planet. Sci. 6 1 DOI: 10.1186/s40645-018-0244-z2019 [40] Catledge S A, Vohra Y K, Ladi R and Rai G Diam. Relat. Mat. 5 1159 DOI: 10.1016/0925-9635(96)00534-11996 [41] Jia H S, Ma H A, Guo W and Jia X P Sci. China-Phys. Mech. Astron. 53 1445 DOI: 10.1007/s11433-010-4045-72010 [42] Burns R, Hansen J, Spits R, Sibanda M, Welbourn C and Welch D Diam. Relat. Mat. 8 1433 DOI: 10.1016/S0925-9635(99)00042-41999 [43] Palyanov Y N, Bataleva Y V, Sokol A G, Borzdov Y M, Kupriyanov I N, Reutsky V N and Sobolev N V Proc. Natl. Acad. Sci. USA 110 20408 DOI: 10.1073/pnas.13133401102013 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|