Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128103    DOI: 10.1088/1674-1056/abb800
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system

Zhi-Yun Lu(鲁智云)1, Yong-Kui Wang(王永奎)1, Shuai Fang(房帅)1, Zheng-Hao Cai(蔡正浩)1, Zhan-Dong Zhao(赵占东)1, Chun-Xiao Wang(王春晓)1, Hong-An Ma(马红安)1,†, Liang-Chao Chen(陈良超)2,‡, and Xiao-Peng Jia(贾晓鹏)1 §
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
Abstract  We report the effects of MgSiO3 addition on the crystal growth and characteristics of type-Ib diamonds synthesized in Fe-Ni-C system. The experiments were carried out with pressure at 5.5 GPa, temperature at 1385 °C-1405 °C, and duration of 23.1 h. As MgSiO3 increases from 0.0 wt% to 3.0 wt%, the diamond growth temperature increases from 1385 °C to 1405 °C, the addition of MgSiO3 and the movement of P-T diagram toward the higher temperature direction result in a series of effects to the Fe-Ni-C system and crystal growth. Firstly, it increases the content of metastable recrystallized graphite and accelerates the competition with the carbon source needed for diamond growth, thus causing the decreased crystal growth rate. Diamond crystals exhibit the combination form of {111}, {100}, {113}, and {110} sectors, the decreased {100} and {113} sectors, dominated {111} sector are all attributed to the higher growth rate in [100] direction caused by the synergy of MgSiO3 and the movement of P-T diagram. The higher growth rate in [100] direction also increases the metal catalyst and graphite inclusions and leads to the increase of residual tensile stress on the crystal surface. Accompanying with the high growth rate, a higher dissolution rate along [100] and [113] directions than [111] direction occurs at the microstructure and forms the significantly developed (111) stepped growth layer. In addition to the movement of P-T diagram, the addition of MgSiO3 poisons the catalyst and increases the nitrogen content of diamond from 120 ppm to 227 ppm.
Keywords:  diamond      MgSiO3      nitrogen content      recrystallized graphite  
Received:  04 July 2020      Revised:  23 August 2020      Accepted manuscript online:  14 September 2020
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.05.ug (Diamond)  
  91.60.-x (Physical properties of rocks and minerals)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 51872112, and 11804305), the China Postdoctoral Science Foundation (Grant No. 2017M622360), and the Project of Jilin Science and Technology Development Plan (Grant No. 20180201079GX).
Corresponding Authors:  Corresponding author. E-mail: maha@jlu.edu.cn Corresponding author. E-mail: chenlc@zzu.edu.cn §Corresponding author. E-mail: jiaxp@jlu.edu.cn   

Cite this article: 

Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏) Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system 2020 Chin. Phys. B 29 128103

[1] Smith E M, Shirey S B and Wang W Y Gems Gemol. 53 388 DOI: 10.5741/GEMS.53.4.3882017
[2] Ogden J Diamonds: An Early History of the King of Gems (New Haven: Yale University Press) pp. 1-20 DOI: 10.12987/97803002355172018
[3] Sally E M, Shigley J E and Breeding C M Gems Gemol. 53 262 DOI: 10.5741/GEMS.53.3.2622017
[4] Wang W Y, Moses T, Linares R C, Shigley J E, Hall M and Butler J E Gems Gemol. 39 268 DOI: 10.5741/GEMS.39.4.2682003
[5] Li Y, Wang Y, Li S S, Li Z B, Luo K W, Ran M W and Song M S Acta Phys. Sin. 68 098101 (in Chinese) DOI: 10.7498/aps.68.201901332019
[6] Fan X H, Xu B, Niu Z, Zhai T G and Tian B Chin. Phys. Lett. 29 048102 DOI: 10.1088/0256-307X/29/4/0481022012
[7] He X M, Du M Y, Zhang Y H, Chu P K and Guo Q F JOM 71 2531 DOI: 10.1007/s11837-019-03592-82019
[8] Wang W Y and Moses T2016 Gems. Gemol. 52 101
[9] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X and Ma H A Cryst. Growth Des. 11 3844 DOI: 10.1021/cg200387n2011
[10] Tian Y, Jia X P, Zang C Y, Li S S, Xiao H Y, Zhang Y F, Huang G F, Li R, Han Q G and Ma L Q Chin. Sci. Bull. 54 1459 DOI: 10.1007/s11434-009-0211-62009
[11] Chen L C, Miao X Y, Ma H A, Guo L S, Wang Z K, Yang Z Q, Fang C and Jia X P Crystengcomm 20 7164 DOI: 10.1039/C8CE01533C2018
[12] Huang G F, Jia H S, Li S S, Zhang Y F, Li Y, Zhao M and Ma H A Chin. Phys. B 19 118101 DOI: 10.1088/1674-1056/19/11/1181012010
[13] Smith E M, Kopylova M G, Frezzotti M L and Afanasiev V P Lithos 216 106 DOI: 10.1007/s11434-009-0211-62015
[14] Stachel T and Luth R W Lithos 220 200 DOI: 10.1007/s11434-009-0211-62015
[15] Dasgupta R and Hirschmann M M Earth Planet. Sci. Lett. 298 1 DOI: 10.1016/j.epsl.2010.06.0392010
[16] Cartigny P, Harris J W and Javoy M Earth Planet. Sci. Lett. 185 85 DOI: 10.1016/S0012-821X(00)00357-52001
[17] Pal'yanov Y N, Sokol A G and Sobolev N V2005 Russ. Geol. Geophys. 46 1271
[18] Sokol A and Pal'yanov Y N Contrib. Mineral. Petrol. 155 33 DOI: 10.1007/s00410-007-0221-92008
[19] Fedortchouk Y, Liebske C and McCammon C Earth Planet. Sci. Lett. 506 493 DOI: 10.1016/j.epsl.2018.11.0252019
[20] Khokhryakov A F and Pal'yanov Y N American Mineralogist 95 1508 DOI: 10.2138/am.2010.34512010
[21] Palyanov Y N, Sokol A, Khokhryakov A and Kruk A Russ. Geol. Geophys. 56 196 DOI: 10.1016/j.rgg.2015.01.0132015
[22] Palyanov Y N, Kupriyanov I N, Khokhryakov A F and Borzdov Y M Crystengcomm 19 4459 DOI: 10.1039/C7CE01083D2017
[23] Ding L Y, Ma H A, Fang S, Yang Z Q, Chen L C, Wang F B and Jia X P J. Cryst. Growth 533 125463 DOI: 10.1016/j.jcrysgro.2019.1254632020
[24] Palyanov Y N, Sokol A G, Tomilenko A A and Sobolev N V Eur. J. Mineral. 17 207 DOI: 10.1127/0935-1221/2005/0017-02072005
[25] Shatskiy A, Borzdov Y M, Sokol A G, Katsura T and Palyanov Y N2008 International Kimberlite Conference: Extended Abstracts, Shatskiy A, Borzdov Y M, Sokol A G, Katsura T and Palyanov Y N 2008 International Kimberlite Conference: Extended Abstracts, August 10-15, 2008, Frankfurt, Germany, p. 1
[26] Bataleva Y, Palyanov Y, Borzdov Y, Novoselov I and Bayukov O Minerals 8 522 DOI: 10.3390/min81105222018
[27] Jacob D, Kronz A and Viljoen K Contrib. Mineral. Petrol. 146 566 DOI: 10.1007/s00410-003-0518-22004
[28] Bulanova G J. Geochem. Explor. 53 1 DOI: 10.1016/0375-6742(94)00016-51995
[29] Garanin V and Kudryavtseva G Lithos 25 211 DOI: 10.1016/0024-4937(90)90016-T1990
[30] Zedgenizov D, Bogush I, Shatsky V, Kovalchuk O, Ragozin A and Kalinina V Minerals 9 741 DOI: 10.3390/min91207412019
[31] Zang C Y, Jia X P, Ma H A, Tian Y and Xiao H Y Chin. Phys. Lett. 22 2415 DOI: 10.1088/0256-307X/22/9/0762005
[32] Fedortchouk Y and Canil D Eur. J. Mineral. 21 623 DOI: 10.1127/0935-1221/2009/0021-19292009
[33] Hao Z Y, Chen Y F and Chen L Z J. Cryst. Growth 135 370 DOI: 10.1016/0022-0248(94)90766-81994
[34] Smith W, Sorokin P, Gelles I and Lasher G Phys. Rev. 115 1546 DOI: 10.1103/PhysRev.115.15461959
[35] Fallon P, Brown L, Barry J and Bruley J Philos. Mag. A 72 21 DOI: 10.1080/014186195082395801995
[36] Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F and Kanda H Diam. Relat. Mat. 14 1932 DOI: 10.1016/j.diamond.2005.06.0412005
[37] Fang S, Ma H A, Cai Z H, Wang C X, Fang C, Zhao Z D, Lu Z Y, Wang Y K, Chen L C and Jia X P Crystengcomm 22 602 DOI: 10.1039/C9CE01759C2020
[38] Palyanov Y N, Borzdov Y M, Kupriyanov I N and Khokhryakov A F Cryst. Growth Des. 12 5571 DOI: 10.1021/cg301111g2012
[39] Mysen B Prog. Earth Planet. Sci. 6 1 DOI: 10.1186/s40645-018-0244-z2019
[40] Catledge S A, Vohra Y K, Ladi R and Rai G Diam. Relat. Mat. 5 1159 DOI: 10.1016/0925-9635(96)00534-11996
[41] Jia H S, Ma H A, Guo W and Jia X P Sci. China-Phys. Mech. Astron. 53 1445 DOI: 10.1007/s11433-010-4045-72010
[42] Burns R, Hansen J, Spits R, Sibanda M, Welbourn C and Welch D Diam. Relat. Mat. 8 1433 DOI: 10.1016/S0925-9635(99)00042-41999
[43] Palyanov Y N, Bataleva Y V, Sokol A G, Borzdov Y M, Kupriyanov I N, Reutsky V N and Sobolev N V Proc. Natl. Acad. Sci. USA 110 20408 DOI: 10.1073/pnas.13133401102013
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[6] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[7] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[8] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[9] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[10] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[11] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[12] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[13] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[14] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[15] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
No Suggested Reading articles found!