Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014702    DOI: 10.1088/1674-1056/abc7a9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment

Xiao-Tong Cui(崔晓通)1, Nan Jiang(姜楠)1,2,†, and Zhan-Qi Tang(唐湛棋)1,2,
1 Department of Mechanics, Tianjin University, Tianjin 300354, China; 2 Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300354, China
Abstract  Active control of a fully developed turbulence boundary layer (TBL) over a flat plate has been investigated with a statistical view. The piezoelectric (PZT) oscillator is employed to produce periodic input into the inner region of the TBL. A wall probe is fixed upstream of the oscillator to identify the high-or low-speed fluctuations as the detecting signals. Then, the impact of the detecting signals on the small-scale bursting process is investigated based on the data acquired by the traversing probe downstream of the oscillator. The results indicate that the small-scale bursting intensity is restrained more apparently at high-speed detecting fluctuations but less impacted at low-speed detecting fluctuations. Furthermore, the perturbed-scale fluctuations arrange the small-scale bursting process in the near-wall region. The detecting signals have an obvious impact on this arrangement, especially the high-intensity regions of the small-scale bursting events: the vibration enhances the intensity at high-speed detecting signals but weakens it at low-speed detecting signals in these regions, which gives a direct evidence on how detecting signals interfering the small-scale bursting process.
Keywords:  turbulent boundary layer      active control      discrete wavelet decomposition      small-scale bursting process  
Received:  24 September 2020      Revised:  15 October 2020      Accepted manuscript online:  05 November 2020
PACS:  47.85.lb (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972251, 11732010, 11572221, 11502066, and 11872272).
Corresponding Authors:  Corresponding author. E-mail: nanj@tju.edu.cn Corresponding author. E-mail: zhanqitang@tju.edu.cn   

Cite this article: 

Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋) Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment 2021 Chin. Phys. B 30 014702

1 Blackwelder R F and Kaplan R E 1976 J. Fluid Mech. 76 89
2 Pan C and Wang J 2015 Procedia IUTAM 17 101
3 Corino E R and Brodkey R S 1969 J. Fluid Mech. 37 1
4 Adrian R J 2007 Phys. Fluids 19 041301
5 Blackwelder R F and Eckelmann H 1979 J. Fluid Mech. 94 577
6 Tang Z and Jiang N 2020 Phys. Fluids 32 015110
7 Jiménez J and Pinelli A 1999 J. Fluid Mech. 389 335
8 Schoppa W and Hussain F 2002 J. Fluid Mech. 453 57
9 Rebbeck H and Choi K S 1975 Phys. Fluids 18 175
10 Jiang D, Zhang H, Fan B, Zhao Z, Gui M and Chen Z 2019 Ocean Eng. 176 74
11 Ge M, Xu C and Cui G X 2015 Acta Mech. Sin. 31 512
12 Jiang D W, Zhang H, Fan B C and Wang A H 2019 Chin. Phys. B 28 054701
13 Tardu S 1995 Exp. Fluids 20 112
14 Tang, Zhanqi, Zheng, Xiaobo, Jiang, Nan, Wu and Yanhua 2016 Experiments in Fluids 57 79
15 Metzger M, McKeon B and ArceLarreta E 2010 Physica D 239 1296
16 Camussi R 1997 J. Fluid Mech. 348 177
17 Camussi R and Guj G 1999 Phys. Fluids 11 423
18 Antonia R A, Orlandi P and Romano G P 1998 Phys. Fluids 10 3239
19 Kim J, Moin P and Moser R 1987 J. Fluid Mech. 177 133
20 Onorato M, Camussi R and Iuso G2000 Phys. Rev. E 61 1447
21 Cui X T, Jiang N, Zheng X B and Tang Z Q 2020 Acta Mech. Sin. 36 12
22 Xu C, Deng B, Huang W and Cui G 2013 Sci. Chin.-Phys. Mech. & Astron. 56 1053
23 Bai H L, Zhou Y, Zhang W G, Xu S J, Wang Y and Antonia R A 2014 J. Fluid Mech. 750 316
24 Zheng X B and Jiang N 2015 Acta Mech. Sin. 31 16
25 Smith C R and Metzler S P 1983 J. Fluid Mech. 129 27
26 Floryan J M and Saric W S 1983 AIAA Journal 21 12
27 Carlson H A and Lumley J L 1996 J. Fluid Mech. 329 341
28 She Z, Jackson E and Orszag S 1991 Proc. R. Soc. A: Math. Phys. Eng. Sci. 434 101
29 Zhang P, Liu A and Wang J 2010 Sci. Chin. Technol. Sci. 53 2772
30 Zheng X B, Jiang N and Zhang H 2016 Chin. Phys. B 25 014703
31 Zheng X B and Jiang N 2015 Chin. Phys. B 24 064702
32 Stefes B and Fernholz H H 2004 Eur. J. Mech. B Fluids 23 303
33 Patel V C and Head M R 1969 J. Fluid Mech. 38 181
34 Xin Y B, Xia K Q and Tong P 1996 Phys. Rev. Lett. 77 1266
35 Bai J X, Huang Y X, Jiang N, Ma X Y and Tang Z Q 2020 Journal of Hydrodynamics 32 747
36 Bai J X, Jiang N, Zheng X B, Tang Z Q, Wang K J and Cui X T 2018 Chin. Phys. B 27 074701
37 Farge M 1992 Annual Review of Fluid Mechanics 24 395
38 Daubechies I 1990 Inf. Theory IEEE Trans. 36 961
39 Kreplin H P and Eckelmann H 1979 J. Fluid Mech. 95 305
40 Johansson A V, Alfredsson P H and Kim J 1991 J. Fluid Mech. 224 579
41 Tang Z, Jiang N, Zheng X and Wu Y 2019 Phys. Fluids 31 025120
42 Meneveau and Charles 1991 J. Fluid Mech. 232 469
[1] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[2] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[3] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[4] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[5] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[6] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
[7] Universal form of the power spectrum of the aero-optical aberration caused by the supersonic turbulent boundary layer
Gao Qiong (高穹), Yi Shi-He (易仕和), Jiang Zong-Fu (姜宗福). Chin. Phys. B, 2014, 23(10): 104201.
[8] Convection and correlation of coherent structure in turbulent boundary layer using tomographic particle image velocimetry
Wang Wei (王维), Guan Xin-Lei (管新蕾), Jiang Nan (姜楠). Chin. Phys. B, 2014, 23(10): 104703.
[9] Temporal evolution of optical path difference of a supersonic turbulent boundary layer
Gao Qiong (高穹), Yi Shi-He (易仕和), Jiang Zong-Fu (姜宗福), He Lin (何霖), Xie Wen-Ke (谢文科). Chin. Phys. B, 2013, 22(1): 014202.
[10] Synchronization of different chaotic systems via active radial basis functions sliding mode controller
Guo Hui-Jun(郭会军), Yin You-Wei(尹有为), and Wang Hua-Min(王华民) . Chin. Phys. B, 2008, 17(5): 1652-1663.
[11] Generalized synchronization of two different chaotic systems
Li Guo-Hui(李国辉). Chin. Phys. B, 2007, 16(9): 2608-2611.
[12] An active control synchronization for two modified Chua circuits
Li Guo-Hui (李国辉). Chin. Phys. B, 2005, 14(3): 472-475.
No Suggested Reading articles found!