ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion |
Yifang Li(李义方)1,2, Qinzhen Shi(石勤振)1, Ying Li(李颖)1, Xiaojun Song(宋小军)1, Chengcheng Liu(刘成成)3,†, Dean Ta(他得安)1,2,3,‡, and Weiqi Wang(王威琪)1 |
1 Department of Electronic Engineering, Fudan University, Shanghai, China; 2 Human Phenome Institute, Fudan University, Shanghai, China; 3 Academy for Engineering and Technology, Fudan University, Shanghai, China |
|
|
Abstract The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalities to give accurate ultrasound images for irregular bone boundaries and microstructures using uniform sound velocity assumption rather than getting a prior knowledge of sound speed. To overcome these limitations, this paper proposed a frequency-domain full-waveform inversion (FDFWI) algorithm for bone quantitative imaging utilizing ultrasonic computed tomography (USCT). The forward model was calculated in the frequency domain by solving the full-wave equation. The inverse problem was solved iteratively from low to high discrete frequency components via minimizing a cost function between the modeled and measured data. A quasi-Newton method called the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was utilized in the optimization process. Then, bone images were obtained based on the estimation of the velocity and density. The performance of the proposed method was verified by numerical examples, from tubular bone phantom to single distal fibula model, and finally with a distal tibia-fibula pair model. Compared with the high-resolution peripheral quantitative computed tomography (HR-pQCT), the proposed FDFWI can also clearly and accurately presented the wavelength scaled pores and trabeculae in bone images. The results proved that the FDFWI is capable of reconstructing high-resolution ultrasound bone images with sub-millimeter resolution. The parametric bone images may have the potential for the diagnosis of bone disease.
|
Received: 21 September 2020
Revised: 02 November 2020
Accepted manuscript online: 05 November 2020
|
PACS:
|
43.60.Lq
|
(Acoustic imaging, displays, pattern recognition, feature extraction)
|
|
43.80.Qf
|
(Medical diagnosis with acoustics)
|
|
43.35.Wa
|
(Biological effects of ultrasound, ultrasonic tomography)
|
|
87.63.dh
|
(Ultrasonographic imaging)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11827808, 11874289, and 11804056), the National Science Fund for Distinguished Young Scholars of China (Grant No. 11525416), Shanghai Municipal Science and Technology Major Project, China (Grant No. 2017SHZDZX01), Shanghai Talent Development Fund (Grant No. 2018112), State Key Laboratory of ASIC and System Project (Grant No. 2018MS004), and China Postdoctoral Science Foundation (Grant No. 2019M661334). |
Corresponding Authors:
†Corresponding author. E-mail: chengchengliu@fudan.edu.cn ‡Corresponding author. E-mail: tda@fudan.edu.cn
|
Cite this article:
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪) High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion 2021 Chin. Phys. B 30 014302
|
1 Seeman E 2008 J. Bone Miner Metab 26 1 2 Schneider J, Ramiandrisoa D, Armbrecht G, Ritter Z, Felsenberg D, Raum K and Minonzio J G 2019 Ultrasound Med. & Biol. 45 1234 3 Minonzio J G, Bochud N, Vallet Q, Bala Y, Ramiandrisoa D, Follet H, Mitton D and Laugier P 2018 Bone 116 111 4 Compston J E, McClung M R and Leslie W D 2019 Lancet 393 364 5 Kanis J A 2002 Lancet 359 1929 6 Matsukawa M 2019 Jpn. J. Appl. Phys. 58 SG0802 7 Liu C, Li B, Diwu Q, Li Y, Zhang R, Ta D and Wang W 2018 IEEE Trans. Ultrason Ferroelectr. Freq. Control 65 2311 8 Liu C, Li B, Li Y, Mao W, Chen C, Zhang R and Ta D 2020 Ultrasound Med. & Biol. 46 305 9 Liu C, Dong R, Li B, Li Y, Xu F, Ta D and Wang W 2019 Chin. Phys. B 28 024302 10 Donnelly E 2011 Clin Orthop Relat. Res. 469 2128 11 Lasaygues P, Guillermin R and Lefebvre J P 2011 Bone Quantitative Ultrasound 1st edn. (Dordrecht: Springer) pp. 441-459 12 Minonzio J G, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K, Kolta S, Roux C and Laugier P 2019 J. Biomed Mater Res. 34 1585 13 Bochud N, Vallet Q, Minonzio J G and Laugier P 2017 Sci. Rep. 7 1 14 Okumura S, Nguyen V H, Taki H, Ha\"íat G, Naili S and Sato T 2018 Appl. Sci. 8 652 15 Moilanen P, Kilappa V, Nicholson P H F, Timonen J and Cheng S 2004 Ultrasound Med. & Biol. 30 1517 16 Padilla F, Jenson F, Bousson V, Peyrin F and Laugier P 2008 Bone 42 1193 17 Hoffmeister B K, McPherson J A, Smathers M R, Spinolo P L and Sellers M E 2015 IEEE Trans. Ultrason Ferroelectr. Freq. Control 62 2115 18 Wear K A 2020 IEEE Trans. Ultrason Ferroelectr. Freq. Control 67 454 19 Denis M, Wan L, Fatemi M and Alizad A 2018 Ultrasound Med. & Biol. 44 714 20 Mohanty K, Yousefian O, Karbalaeisadegh Y, Ulrich M, Grimal Q and Muller M 2019 Comput. Biol. Med. 114 1 21 Lahivaara T, Karkkainen L, Huttunen J M J and Hesthaven J S 2018 J. Acoust Soc. Am. 143 1148 22 Li Y, Xu K, Li Y, Hu B, Zhang J, Le L H and Ta D 2019 IEEE International Ultrasonics Symposium (IUS) Oct, Glasgow 23 Foiret J, Minonzio J G, Chappard C, Talmant M and Laugier P 2014 IEEE Trans. Ultrason Ferroelectr. Freq. Control 61 1478 24 Bochud N, Vallet Q, Bala Y, Follet H, Minonzio J G and Laugier P 2016 Phys. Med. Biol. 61 6953 25 Schneider J, Iori G, Ramiandrisoa D, Hammami M, Grasel M, Chappard C, Barkmann R, Laugier P, Grimal Q, Minonzio J G and Raum K 2019 Arch Osteoporos 14 21 26 Okumura S, Nguyen V H, Taki H, Ha\"íat G, Naili S and Sato T 2017 Jpn. J. Appl. Phys. 56 07JF06 27 Jensen J A, Nikolov S I, Gammelmark K L and Pedersen M H 2006 Ultrason. 44 Suppl 1 e5 28 Garcia D, Le T L, Muth S, Montagnon E, Poree J and Cloutier G 2013 IEEE Trans. Ultrason Ferroelectr. Freq. Control 60 1853 29 Couture O, Hingot V, Heiles B, Muleki-Seya P and Tanter M 2018 IEEE Trans. Ultrason Ferroelectr. Freq. Control 65 1304 30 Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O and Tanter M 2015 Nature 527 499 31 Bernard S, Monteiller V, Komatitsch D and Lasaygues P 2017 Phys. Med. Biol. 62 7011 32 Renaud G, Kruizinga P, Cassereau D and Laugier P 2018 Phys. Med. Biol. 63 125010 33 Jiang C, Li Y, Li B, Liu C, Xu F, Xu K and Ta D 2019 IEEE Access 7 163013 34 Li Y, Jiang C, Li Y, Xu F, Xu K, Ta D and H L L 2019 Acta Phys. Sin. 68 184302 (in Chinese) 35 Olofsson T 2010 IEEE Trans. Ultrason Ferroelectr. Freq. Control 57 2522 36 Wu H, Chen J, Yang K and Hu X 2016 Meas. Sci. Technol. 27 045401 37 Qin K, Yang C and Sun F 2014 IEEE Trans. Ultrason Ferroelectr. Freq. Control 61 133 38 Wu S and Yang K 2014 IEEE International Ultrasonics Symposium (IUS) Sep, Chicago 39 Guasch L, Calderon A O, Tang M X, Nachev P and Warner M 2020 npj Digit. Med. 3 1 40 Lasaygues P, Ouedraogo E, Lefebvre J P, Gindre M, Talmant M and Laugier P 2005 Phys. Med. Biol. 50 2633 41 Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D and Wang W 2019 Ultrason Imaging 41 271 42 Liu Q and Gu Y J 2012 Tectonophysics 566-567 31 43 Li C, Duric N, Littrup P and Huang L 2009 Ultrasound Med. & Biol. 35 1615 44 Qu X, Azuma T, Imoto H, Raufy R, Lin H, Nakamura H, Tamano S, Takagi S, Umemura S I, Sakuma I and Matsumoto Y 2015 Jpn. J. Appl. Phys. 54 07FH10 45 Rao J, Ratassepp M and Fan Z 2016 IEEE Trans. Ultrason Ferroelectr. Freq. Control 63 737 46 Rao J, Ratassepp M and Fan Z 2017 J. Sound Vib. 400 317 47 Guillermin R, Lasaygues P, Rabau G and Lefebvre J P 2013 J. Acoust Soc. Am. 134 1001 48 Zheng R, Le L H, Sacchi M D and Lou E 2015 Ultrasound Med. Biol. 41 2955 49 Perez-Liva M, Herraiz J L, Udias J M, Miller E, Cox B T and Treeby B E 2017 J. Acoust Soc. Am. 141 1595 50 Virieux J and Operto S 2009 Geophysics 74 WCC1 51 Operto S, Gholami Y, Prieux V, Ribodetti A, Brossier R, Metivier L and Virieux J 2013 Lead. Edge 32 1040 52 Li C, Huang L, Duric N, Zhang H and Rowe C 2009 Ultrasonics 49 61 53 Hooi F M and Carson P L 2014 Med. Phys. 41 082902 54 Wang K, Matthews T, Anis F, Li C, Duric N and Anastasio M A 2015 IEEE Trans. Ultrason Ferroelectr. Freq. Control 62 475 55 Falardeau T and Belanger P 2018 J. Acoust Soc. Am. 144 2937 56 Lasaygues P, Rouyer J, Mensah S, Franceschini E, Rabau G, Guillermin R, Bernard S, Monteiller V and Komatitsch D 2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer pp. 77-88 57 Lu C, Lin J, Chew W and Otto G 1996 Ultrason Imaging 8 140 58 Pratt R G 2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer pp. 65-76 59 Pratt R G 1999 Geophysics 64 888 60 Pratt R G and Shipp R M 1999 Geophysics 64 1942 61 Sandhu G Y, Li C, Roy O, Schmidt S and Duric N 2015 Phys. Med. Biol. 60 5381 62 Pratt R G and Worthington M H 1990 Geophys. Prospect. 38 287 63 Demmel J W, Eisenstat S C, Gilbert J R, Li X S and Liu J W H 1999 SIAM J. Matrix Anal. Appl. 20 720 64 Hormati A, Jovanovi\'c I, Roy O and Vetterli M 2010 Med. Imaging 2010: Ultrasonic Imaging, Tomography and Therapy Mar, San Diego 65 Plessix R E 2006 Geophys. J. Int. 167 495 66 Tromp J, Komatitsch D and Liu Q2008 Commun. Comput. Phys. 3 1 67 Wang Q, Zhang J and Huang Z 2015 Prog. Geophys. (Chin.) 30 2797 68 Byrd R H, Lu P, Nocedal J and Zhu C 1995 SIAM J. Sci. Comput. 16 1190 69 Kalita M, Kazei V, Choi Y and Alkhalifah T 2019 Geophysics 84 R569 70 Lin Y and Huang L 2015 Geophys. J. Int. 203 2125 71 Lin Y and Huang L 2014 Geophys. J. Int. 200 489 72 Kazei V, Kalita M and Alkhalifah T A 2017 79th EAGE Conference and Exhibition 2017 Jun, Paris, p. 1 73 Bernard S, Schneider J, Varga P, Laugier P, Raum K and Grimal Q 2016 Biomech Model Mechanobiol 15 97 74 Xu K and McMechan G A 2014 Geophysics 79 R41 75 Tarantola A 1986 Geophysics 51 1893 76 Choi Y, Min D J and Shin C 2008 Geophys. Prospect. 56 863 77 Jeong W, Lee H Y and Min D J 2012 Geophys. J. Int. 188 1221 78 Ha\"íat G 2011 Bone Quantitative Ultrasound 1st edn. (Dordrecht: Springer) pp. 331-360 79 Wear K A 2001 IEEE Trans. Ultrason Ferroelectr. Freq. Control 48 602 80 Pakula M, Padilla F and Laugier P 2009 J. Acoust Soc. Am. 126 3301 81 Moilanen P, Salmi A, Kilappa V, Zhao Z, Timonen J and Hæggström E 2017 J. Appl. Phys. 122 144901 82 Lasaygues P, Rouyer J, Mensah S, Franceschini E, Rabau G, Guillermin R, Bernard S, Monteiller V and Komatitsch D2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer 83 Pratt R G2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|