Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014302    DOI: 10.1088/1674-1056/abc7aa
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion

Yifang Li(李义方)1,2, Qinzhen Shi(石勤振)1, Ying Li(李颖)1, Xiaojun Song(宋小军)1, Chengcheng Liu(刘成成)3,†, Dean Ta(他得安)1,2,3,‡, and Weiqi Wang(王威琪)1
1 Department of Electronic Engineering, Fudan University, Shanghai, China; 2 Human Phenome Institute, Fudan University, Shanghai, China; 3 Academy for Engineering and Technology, Fudan University, Shanghai, China
Abstract  The main challenge in bone ultrasound imaging is the large acoustic impedance contrast and sound velocity differences between the bone and surrounding soft tissue. It is difficult for conventional pulse-echo modalities to give accurate ultrasound images for irregular bone boundaries and microstructures using uniform sound velocity assumption rather than getting a prior knowledge of sound speed. To overcome these limitations, this paper proposed a frequency-domain full-waveform inversion (FDFWI) algorithm for bone quantitative imaging utilizing ultrasonic computed tomography (USCT). The forward model was calculated in the frequency domain by solving the full-wave equation. The inverse problem was solved iteratively from low to high discrete frequency components via minimizing a cost function between the modeled and measured data. A quasi-Newton method called the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was utilized in the optimization process. Then, bone images were obtained based on the estimation of the velocity and density. The performance of the proposed method was verified by numerical examples, from tubular bone phantom to single distal fibula model, and finally with a distal tibia-fibula pair model. Compared with the high-resolution peripheral quantitative computed tomography (HR-pQCT), the proposed FDFWI can also clearly and accurately presented the wavelength scaled pores and trabeculae in bone images. The results proved that the FDFWI is capable of reconstructing high-resolution ultrasound bone images with sub-millimeter resolution. The parametric bone images may have the potential for the diagnosis of bone disease.
Keywords:  quantitative imaging      full-waveform inversion      bone microstructure      ultrasonic computed tomography      high resolution  
Received:  21 September 2020      Revised:  02 November 2020      Accepted manuscript online:  05 November 2020
PACS:  43.60.Lq (Acoustic imaging, displays, pattern recognition, feature extraction)  
  43.80.Qf (Medical diagnosis with acoustics)  
  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
  87.63.dh (Ultrasonographic imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11827808, 11874289, and 11804056), the National Science Fund for Distinguished Young Scholars of China (Grant No. 11525416), Shanghai Municipal Science and Technology Major Project, China (Grant No. 2017SHZDZX01), Shanghai Talent Development Fund (Grant No. 2018112), State Key Laboratory of ASIC and System Project (Grant No. 2018MS004), and China Postdoctoral Science Foundation (Grant No. 2019M661334).
Corresponding Authors:  Corresponding author. E-mail: chengchengliu@fudan.edu.cn Corresponding author. E-mail: tda@fudan.edu.cn   

Cite this article: 

Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪) High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion 2021 Chin. Phys. B 30 014302

1 Seeman E 2008 J. Bone Miner Metab 26 1
2 Schneider J, Ramiandrisoa D, Armbrecht G, Ritter Z, Felsenberg D, Raum K and Minonzio J G 2019 Ultrasound Med. & Biol. 45 1234
3 Minonzio J G, Bochud N, Vallet Q, Bala Y, Ramiandrisoa D, Follet H, Mitton D and Laugier P 2018 Bone 116 111
4 Compston J E, McClung M R and Leslie W D 2019 Lancet 393 364
5 Kanis J A 2002 Lancet 359 1929
6 Matsukawa M 2019 Jpn. J. Appl. Phys. 58 SG0802
7 Liu C, Li B, Diwu Q, Li Y, Zhang R, Ta D and Wang W 2018 IEEE Trans. Ultrason Ferroelectr. Freq. Control 65 2311
8 Liu C, Li B, Li Y, Mao W, Chen C, Zhang R and Ta D 2020 Ultrasound Med. & Biol. 46 305
9 Liu C, Dong R, Li B, Li Y, Xu F, Ta D and Wang W 2019 Chin. Phys. B 28 024302
10 Donnelly E 2011 Clin Orthop Relat. Res. 469 2128
11 Lasaygues P, Guillermin R and Lefebvre J P 2011 Bone Quantitative Ultrasound 1st edn. (Dordrecht: Springer) pp. 441-459
12 Minonzio J G, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K, Kolta S, Roux C and Laugier P 2019 J. Biomed Mater Res. 34 1585
13 Bochud N, Vallet Q, Minonzio J G and Laugier P 2017 Sci. Rep. 7 1
14 Okumura S, Nguyen V H, Taki H, Ha\"íat G, Naili S and Sato T 2018 Appl. Sci. 8 652
15 Moilanen P, Kilappa V, Nicholson P H F, Timonen J and Cheng S 2004 Ultrasound Med. & Biol. 30 1517
16 Padilla F, Jenson F, Bousson V, Peyrin F and Laugier P 2008 Bone 42 1193
17 Hoffmeister B K, McPherson J A, Smathers M R, Spinolo P L and Sellers M E 2015 IEEE Trans. Ultrason Ferroelectr. Freq. Control 62 2115
18 Wear K A 2020 IEEE Trans. Ultrason Ferroelectr. Freq. Control 67 454
19 Denis M, Wan L, Fatemi M and Alizad A 2018 Ultrasound Med. & Biol. 44 714
20 Mohanty K, Yousefian O, Karbalaeisadegh Y, Ulrich M, Grimal Q and Muller M 2019 Comput. Biol. Med. 114 1
21 Lahivaara T, Karkkainen L, Huttunen J M J and Hesthaven J S 2018 J. Acoust Soc. Am. 143 1148
22 Li Y, Xu K, Li Y, Hu B, Zhang J, Le L H and Ta D 2019 IEEE International Ultrasonics Symposium (IUS) Oct, Glasgow
23 Foiret J, Minonzio J G, Chappard C, Talmant M and Laugier P 2014 IEEE Trans. Ultrason Ferroelectr. Freq. Control 61 1478
24 Bochud N, Vallet Q, Bala Y, Follet H, Minonzio J G and Laugier P 2016 Phys. Med. Biol. 61 6953
25 Schneider J, Iori G, Ramiandrisoa D, Hammami M, Grasel M, Chappard C, Barkmann R, Laugier P, Grimal Q, Minonzio J G and Raum K 2019 Arch Osteoporos 14 21
26 Okumura S, Nguyen V H, Taki H, Ha\"íat G, Naili S and Sato T 2017 Jpn. J. Appl. Phys. 56 07JF06
27 Jensen J A, Nikolov S I, Gammelmark K L and Pedersen M H 2006 Ultrason. 44 Suppl 1 e5
28 Garcia D, Le T L, Muth S, Montagnon E, Poree J and Cloutier G 2013 IEEE Trans. Ultrason Ferroelectr. Freq. Control 60 1853
29 Couture O, Hingot V, Heiles B, Muleki-Seya P and Tanter M 2018 IEEE Trans. Ultrason Ferroelectr. Freq. Control 65 1304
30 Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O and Tanter M 2015 Nature 527 499
31 Bernard S, Monteiller V, Komatitsch D and Lasaygues P 2017 Phys. Med. Biol. 62 7011
32 Renaud G, Kruizinga P, Cassereau D and Laugier P 2018 Phys. Med. Biol. 63 125010
33 Jiang C, Li Y, Li B, Liu C, Xu F, Xu K and Ta D 2019 IEEE Access 7 163013
34 Li Y, Jiang C, Li Y, Xu F, Xu K, Ta D and H L L 2019 Acta Phys. Sin. 68 184302 (in Chinese)
35 Olofsson T 2010 IEEE Trans. Ultrason Ferroelectr. Freq. Control 57 2522
36 Wu H, Chen J, Yang K and Hu X 2016 Meas. Sci. Technol. 27 045401
37 Qin K, Yang C and Sun F 2014 IEEE Trans. Ultrason Ferroelectr. Freq. Control 61 133
38 Wu S and Yang K 2014 IEEE International Ultrasonics Symposium (IUS) Sep, Chicago
39 Guasch L, Calderon A O, Tang M X, Nachev P and Warner M 2020 npj Digit. Med. 3 1
40 Lasaygues P, Ouedraogo E, Lefebvre J P, Gindre M, Talmant M and Laugier P 2005 Phys. Med. Biol. 50 2633
41 Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D and Wang W 2019 Ultrason Imaging 41 271
42 Liu Q and Gu Y J 2012 Tectonophysics 566-567 31
43 Li C, Duric N, Littrup P and Huang L 2009 Ultrasound Med. & Biol. 35 1615
44 Qu X, Azuma T, Imoto H, Raufy R, Lin H, Nakamura H, Tamano S, Takagi S, Umemura S I, Sakuma I and Matsumoto Y 2015 Jpn. J. Appl. Phys. 54 07FH10
45 Rao J, Ratassepp M and Fan Z 2016 IEEE Trans. Ultrason Ferroelectr. Freq. Control 63 737
46 Rao J, Ratassepp M and Fan Z 2017 J. Sound Vib. 400 317
47 Guillermin R, Lasaygues P, Rabau G and Lefebvre J P 2013 J. Acoust Soc. Am. 134 1001
48 Zheng R, Le L H, Sacchi M D and Lou E 2015 Ultrasound Med. Biol. 41 2955
49 Perez-Liva M, Herraiz J L, Udias J M, Miller E, Cox B T and Treeby B E 2017 J. Acoust Soc. Am. 141 1595
50 Virieux J and Operto S 2009 Geophysics 74 WCC1
51 Operto S, Gholami Y, Prieux V, Ribodetti A, Brossier R, Metivier L and Virieux J 2013 Lead. Edge 32 1040
52 Li C, Huang L, Duric N, Zhang H and Rowe C 2009 Ultrasonics 49 61
53 Hooi F M and Carson P L 2014 Med. Phys. 41 082902
54 Wang K, Matthews T, Anis F, Li C, Duric N and Anastasio M A 2015 IEEE Trans. Ultrason Ferroelectr. Freq. Control 62 475
55 Falardeau T and Belanger P 2018 J. Acoust Soc. Am. 144 2937
56 Lasaygues P, Rouyer J, Mensah S, Franceschini E, Rabau G, Guillermin R, Bernard S, Monteiller V and Komatitsch D 2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer pp. 77-88
57 Lu C, Lin J, Chew W and Otto G 1996 Ultrason Imaging 8 140
58 Pratt R G 2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer pp. 65-76
59 Pratt R G 1999 Geophysics 64 888
60 Pratt R G and Shipp R M 1999 Geophysics 64 1942
61 Sandhu G Y, Li C, Roy O, Schmidt S and Duric N 2015 Phys. Med. Biol. 60 5381
62 Pratt R G and Worthington M H 1990 Geophys. Prospect. 38 287
63 Demmel J W, Eisenstat S C, Gilbert J R, Li X S and Liu J W H 1999 SIAM J. Matrix Anal. Appl. 20 720
64 Hormati A, Jovanovi\'c I, Roy O and Vetterli M 2010 Med. Imaging 2010: Ultrasonic Imaging, Tomography and Therapy Mar, San Diego
65 Plessix R E 2006 Geophys. J. Int. 167 495
66 Tromp J, Komatitsch D and Liu Q2008 Commun. Comput. Phys. 3 1
67 Wang Q, Zhang J and Huang Z 2015 Prog. Geophys. (Chin.) 30 2797
68 Byrd R H, Lu P, Nocedal J and Zhu C 1995 SIAM J. Sci. Comput. 16 1190
69 Kalita M, Kazei V, Choi Y and Alkhalifah T 2019 Geophysics 84 R569
70 Lin Y and Huang L 2015 Geophys. J. Int. 203 2125
71 Lin Y and Huang L 2014 Geophys. J. Int. 200 489
72 Kazei V, Kalita M and Alkhalifah T A 2017 79th EAGE Conference and Exhibition 2017 Jun, Paris, p. 1
73 Bernard S, Schneider J, Varga P, Laugier P, Raum K and Grimal Q 2016 Biomech Model Mechanobiol 15 97
74 Xu K and McMechan G A 2014 Geophysics 79 R41
75 Tarantola A 1986 Geophysics 51 1893
76 Choi Y, Min D J and Shin C 2008 Geophys. Prospect. 56 863
77 Jeong W, Lee H Y and Min D J 2012 Geophys. J. Int. 188 1221
78 Ha\"íat G 2011 Bone Quantitative Ultrasound 1st edn. (Dordrecht: Springer) pp. 331-360
79 Wear K A 2001 IEEE Trans. Ultrason Ferroelectr. Freq. Control 48 602
80 Pakula M, Padilla F and Laugier P 2009 J. Acoust Soc. Am. 126 3301
81 Moilanen P, Salmi A, Kilappa V, Zhao Z, Timonen J and Hæggström E 2017 J. Appl. Phys. 122 144901
82 Lasaygues P, Rouyer J, Mensah S, Franceschini E, Rabau G, Guillermin R, Bernard S, Monteiller V and Komatitsch D2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer
83 Pratt R G2017 International Workshop on Medical Ultrasound Tomography Nov, Speyer
[1] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[2] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[3] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[4] Structural characterization of Al0.55Ga0.45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy
Qing-Jun Xu(徐庆君), Bin Liu(刘斌), Shi-Ying Zhang(张士英), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(4): 047801.
[5] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi (马亚琪), Shao Jin-Hai (邵金海), Zhang Ya-Feng (张亚峰), Lu Bing-Rui (陆冰睿), Zhang Si-Chao (张思超), Sun Yan (孙艳), Qu Xin-Ping (屈新萍), Chen Yi-Fang (陈宜方). Chin. Phys. B, 2015, 24(8): 080702.
[6] A 23.75-GHz frequency comb with two low-finesse filtering cavities in series for high resolution spectroscopy
Hou Lei (侯磊), Han Hai-Nian (韩海年), Wang Wei (王薇), Zhang Long (张龙), Pang Li-Hui (庞利辉), Li De-Hua (李德华), Wei Zhi-Yi (魏志义). Chin. Phys. B, 2015, 24(2): 024213.
[7] Epitaxial growth of Ge1-xSnx films with x up to 0.14 grown on Ge (00l) at low temperature
Tao Ping (陶平), Huang Lei (黄磊), Cheng H H, Wang Huan-Hua (王焕华), Wu Xiao-Shan (吴小山). Chin. Phys. B, 2014, 23(8): 088112.
[8] The laser-intensity dependence of the photoassociation spectrum of the ultracold Cs2(6S1/2+6P1/2) 0u+ long-range molecular state
Jin Li (金丽), Feng Guo-Sheng (冯国胜), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Wang Li-Rong (汪丽蓉), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2013, 22(8): 088701.
[9] Nanoelectronic devices---resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature
Zhang Yang (张杨), Zeng Yi-Ping (曾一平), Ma Long (马龙), Wang Bao-Qiang (王宝强), Zhu Zhan-Ping (朱占平), Wang Liang-Chen (王良臣), Yang Fu-Hua (杨富华). Chin. Phys. B, 2006, 15(6): 1335-1338.
[10] Application of the high-resolution Godunov method to the multi-fluid flow calculations
Bai Jing-Song (柏劲松), Li Ping (李平), Zhang Zhan-Ji (张展冀), Hua Jing-Song (华劲松), Tan Hua (谭华). Chin. Phys. B, 2004, 13(12): 1992-1998.
No Suggested Reading articles found!