Special Issue:
SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
|
SPECIAL TOPIC—Modeling and simulations for the structures and functions of proteins and nucleic acids |
Prev
Next
|
|
|
Computational prediction of RNA tertiary structures using machine learning methods |
Bin Huang(黄斌)1,2, Yuanyang Du(杜渊洋)1,2, Shuai Zhang(张帅)1,2, Wenfei Li(李文飞)1,2, Jun Wang (王骏)1,2, and Jian Zhang(张建)1,2,† |
1 National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2 Institute for Brain Sciences, Kuang Yaming Honors School, Nanjing University, Nanjing 210093, China |
|
|
Abstract RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to understand RNA structures and their stabilizing factors, thus providing information on their functions, and facilitating the design of new RNAs. Machine learning (ML) techniques have made tremendous progress in many fields in the past few years. Although their usage in protein-related fields has a long history, the use of ML methods in predicting RNA tertiary structures is new and rare. Here, we review the recent advances of using ML methods on RNA structure predictions and discuss the advantages and limitation, the difficulties and potentials of these approaches when applied in the field.
|
Received: 27 June 2020
Revised: 22 August 2020
Accepted manuscript online: 27 August 2020
|
PACS:
|
87.15.B-
|
(Structure of biomolecules)
|
|
87.14.gn
|
(RNA)
|
|
07.05.Mh
|
(Neural networks, fuzzy logic, artificial intelligence)
|
|
Corresponding Authors:
†Corresponding author. E-mail: jzhang@nju.edu.cn
|
About author: †Corresponding author. E-mail: jzhang@nju.edu.cn * Project supported by the National Natural Science Foundation of China (Grant Nos. 11774158, 11974173, 11774157, and 11934008). |
Cite this article:
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)† Computational prediction of RNA tertiary structures using machine learning methods 2020 Chin. Phys. B 29 108704
|
[1] |
Mercer T R, Dinger M E, Mattick J S 2009 Nat. Rev. Genetics 10 155 DOI: 10.1038/nrg2521
|
[2] |
Geisler S, Coller J 2013 Nat. Rev. Mol. Cell Biol. 14 699 DOI: 10.1038/nrm3679
|
[3] |
|
[4] |
Morris K V, Mattick J S 2014 Nat. Rev. Genetics 15 423 DOI: 10.1038/nrg3722
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
Sponer J, Bussi G, Krepl M, Banas P, Bottaro S, Cunha R A, Gil-Ley A, Pinamonti G, Poblete S, Jurecka P, Walter N G, Otyepka M 2018 Chem. Rev. 118 4177 DOI: 10.1021/acs.chemrev.7b00427
|
[10] |
|
[11] |
|
[12] |
Goodfellow I, Bengio Y, Courville A 2016 Deep learning. Adaptive computation and machine learning Cambridge The MIT Press 197 200
|
[13] |
Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham H, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D 2016 Nature 529 484 DOI: 10.1038/nature16961
|
[14] |
Alipanahi B, Delong A, Weirauch M T, Frey B J 2015 Nat. Biotech. 33 831 DOI: 10.1038/nbt.3300
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
Frellsen J, Moltke I, Thiim M, Mardia K V, Ferkinghoff-Borg J, Hamelryck T 2009 Plos Comput. Biol. 5 e1000406 DOI: 10.1371/journal.pcbi.1000406
|
[35] |
|
[36] |
|
[37] |
|
[38] |
Theis C, Siederdissen C H, Hofacke I L, Gorodki J 2013 Nuc. Acids Res. 41 9999 DOI: 10.1093/nar/gkt795
|
[39] |
Zirbel C, Roll J, Sweeney B A, Petrov A I, Pirrung M, Leontis N B 2015 Nuc. Acids Res. 43 7504 DOI: 10.1093/nar/gkv651
|
[40] |
Theis C, Zirbel C L, Siederdissen C H, Anthon C, Hofacker I L, Nielsen H, Gorodkin J 2015 PLOS One 10 e0139900 DOI: 10.1371/journal.pone.0139900
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
Wang J M, Cieplak P, Li J, Wang J, Cai Q, Hsieh M J, Lei H X, Luo R, Duan Y 2011 J. Phys. Chem. B 115 3100 DOI: 10.1021/jp1121382
|
[51] |
Li Y, Li H, Pickard F C, Narayanan B, Sen F G, Chan M, Sankaranarayanan S, Brooks B R, Roux B 2017 J. Chem. Theory Comput. 13 4492 DOI: 10.1021/acs.jctc.7b00521
|
[52] |
Bereau T, DiStasio R A, Tkatchenko A, Lilienfeld O A 2018 J. Chem. Phys. 148 241706 DOI: 10.1063/1.5009502
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J 2019 Proteins 87 1011 DOI: 10.1002/prot.v87.12
|
[59] |
Senior A W, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Zidek A, Nelson A, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones D T, Silver D, Kavukcuoglu K, Hassabis D 2019 Nature 577 706 DOI: 10.1038/s41586-019-1923-7
|
[60] |
|
[61] |
Leonardis E D, Lutz B, Ratz S, Cocco S, Monasson R, Schug A, Weigt M 2015 Nuc. Acids Res. 43 10444 DOI: 10.1093/nar/gkv932
|
[62] |
Wang J, Mao K, Zhao Y J, Zeng C, Xiang J, Zhang Y, Xiao Y 2017 Nuc. Acids Res. 45 6299 DOI: 10.1093/nar/gkx386
|
[63] |
Zhao Y, Huang Y, Gong Z, Wang Y, Man J, Xiao Y 2012 Scientific Reports 2 734 DOI: 10.1038/srep00734
|
[64] |
Wang J, Xiao Y 2017 Current Protocols in bioinformatics 57 5 DOI: 10.1002/cpbi.21
|
[65] |
|
[66] |
|
[67] |
|
[68] |
Zhang H, Zhang Q, Ju F, Zhu J, Gao Y, Xie Z, Deng M, Sun S, Zheng W M, Bu D B 2019 BMC Bioinformatics 20 537 DOI: 10.1186/s12859-019-3051-7
|
[69] |
|
[70] |
Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki E P, Rivas E, Eddy S R, Bateman A, Finn R D, Petrov A 2018 Nuc. Acids Res. 46 D335 DOI: 10.1093/nar/gkx1038
|
[71] |
Wang J X, Nelson Z K, Tirumala D, Soyer H, Leibo J Z, Munos R, Blundell C, Kumaran D, Botvinick M 2017 arXiv: 1611.05763v3 DOI: 10.1145/3386252
|
[72] |
|
[73] |
Wang Y, Yao Q, Kwok J K, Ni L M 2020 ACM Computing Surveys 53 63 DOI: 10.1145/3386252
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|