Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010314    DOI: 10.1088/1674-1056/ac2490
GENERAL Prev   Next  

Dynamical learning of non-Markovian quantum dynamics

Jintao Yang(杨锦涛)1,2,†, Junpeng Cao(曹俊鹏)1,2,3,4,‡, and Wen-Li Yang(杨文力)4,5,6,7,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China;
5 Institute of Modern Physics, Northwest University, Xi'an 710127, China;
6 School of Physical Sciences, Northwest University, Xi'an 710127, China;
7 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
Abstract  We study the non-Markovian dynamics of an open quantum system with machine learning. The observable physical quantities and their evolutions are generated by using the neural network. After the pre-training is completed, we fix the weights in the subsequent processes thus do not need the further gradient feedback. We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator. The dynamical learning can be applied to other quantum many-body systems, non-equilibrium statistics and random processes.
Keywords:  machine learning      quantum dynamics      open quantum system  
Received:  03 June 2021      Revised:  19 July 2021      Accepted manuscript online:  08 September 2021
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  47.10.Fg (Dynamical systems methods)  
  02.50.Ga (Markov processes)  
Fund: Project supported by the National Program for Basic Research of the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300600 and 2016YFA0302104), the National Natural Science Foundation of China (Grant Nos. 12074410, 12047502, 11934015, 11975183, 11947301, 11774397, 11775178, and 11775177), the Major Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2017ZDJC-32), the Australian Research Council (Grant No. DP 190101529), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000), and the Double First-Class University Construction Project of Northwest University.
Corresponding Authors:  Jintao Yang, Junpeng Cao, and Wen-Li Yang     E-mail:;;

Cite this article: 

Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力) Dynamical learning of non-Markovian quantum dynamics 2022 Chin. Phys. B 31 010314

[1] Ohtsuki T and Ohtsuki T 2016 J. Phys. Soc. Jpn. 85 123706
[2] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[3] Zhang Y and Kim E A 2017 Phys. Rev. Lett. 118 216401
[4] Ch'ng K, Carrasquilla J, Melko R G and Khatami E 2017 Phys. Rev. X 7 031038
[5] Beach M J S, Golubeva A and Melko R G 2018 Phys. Rev. B 97 045207
[6] Rem B S, Kaming N, Tarnowski M, Asteria L, Flaschner N, Becker C, Sengstock K and Weitenberg C 2019 Nat. Phys. 15 917
[7] Huembeli P, Dauphin A and Wittek P 2018 Phys. Rev. B 97 134109
[8] Casert C, Vieijra T, Nys J and Ryckebusch J 2019 Phys. Rev. E 99 023304
[9] Zhang W, Liu J and Wei T C 2019 Phys. Rev. E 99 032142
[10] Huembeli P, Dauphin A, Wittek P and Gogolin C 2019 Phys. Rev. B 99 104106
[11] Kharkov Y A, Sotskov V E, Karazeev A A, Kiktenko E O and Fedorov A K 2020 Phys. Rev. B 101 064406
[12] Sun L W, Li H, Wang P J, Gao H B and Luo M B 2019 Acta Phys. Sin. 68 200701 (in Chinese)
[13] Su Z X, Kang Y Z, Zhang B F, Zhang Z Q and Jiang H 2019 Chin. Phys. B 28 117301
[14] Zhang P, Shen H and Zhai H 2018 Phys. Rev. Lett. 120 066401
[15] Sun N, Yi J, Zhang P, Shen H and Zhai H 2018 Phys. Rev. B 98 085402
[16] Carvalho D, Garcia-Martinez N A, Lado J L and Fernandez-Rossier J 2018 Phys. Rev. B 97 115453
[17] Mano T and Ohtsuki T 2019 J. Phys. Soc. Jpn. 88 123704
[18] Ming Y, Lin C, Bartlett S D and Zhang W W 2019 npj Comput. Mater. 5 88
[19] Carleo G and Troyer M 2017 Science 355 602
[20] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. X 7 021021
[21] Gao X and Duan L M 2017 Nat. Commun. 8 662
[22] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. B 96 195145
[23] Nomura Y, Darmawan A S, Yamaji Y and Imada M 2017 Phys. Rev. B 96 205152
[24] Kaubruegger R, Pastori L and Budich J C 2018 Phys. Rev. B 97 195136
[25] Pastori L, Kaubruegger R and Budich J C 2019 Phys. Rev. B 99 165123
[26] Levine Y, Sharir O, Cohen N and Shashua A 2019 Phys. Rev. Lett. 122 065301
[27] Broecker P, Carrasquilla J, Melko R G and Trebst S 2017 Sci. Rep. 7 8823
[28] Bukov M, Day A G R, Sels D, Weinberg P, Polkovnikov A and Mehta P 2018 Phys. Rev. X 8 031086
[29] Shen H, Liu J and Fu L 2018 Phys. Rev. B 97 205140
[30] Torlai G and Melko R G 2017 Phys. Rev. Lett. 119 030501
[31] Fösel T, Tighineanu P, Weiss T and Marquardt F 2018 Phys. Rev. X 8 031084
[32] Baireuther P, O'Brien T E, Tarasinski B and Beenakker C 2018 Quantum 2 48
[33] Andreasson P, Johansson J, Liljestrand S and Granath M 2019 Quantum 3 183
[34] Yuan L, Yang X S and Wang B Z 2019 Acta Phys. Sin. 68 170503 (in Chinese)
[35] Zhu Z J, Guo Y, Yang F, Xiao B J and Li J G 2019 Chin. Phys. B 28 125204
[36] Li P C, Wang H Y, Dai Q and Xiao H 2012 Acta Phys. Sin. 61 160303 (in Chinese)
[37] Han J, Zhang Z, Zhang X and Zhou J 2020 Chin. Phys. B 29 110201
[38] Luchnikov I A, Vintskevich S V, Grigoriev D A and Filippov S N 2020 Phys. Rev. Lett. 124 140502
[39] Perich M G, Gallego J A and Miller L E 2018 Neuron 100 964
[40] Klos C, Kossio Y F K, Goedeke S, Gilra A and Memmesheimer R M 2020 Phys. Rev. Lett. 125 088103
[41] Sussillo D and Abbott L F 2009 Neuron 63 544
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[5] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[6] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[7] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[8] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[11] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[12] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[13] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[14] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[15] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
No Suggested Reading articles found!