Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120509    DOI: 10.1088/1674-1056/ac04a9
GENERAL Prev   Next  

Stability analysis of hydro-turbine governing system based on machine learning

Yuansheng Chen(陈元盛) and Fei Tong(仝飞)
State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
Abstract  Hydro-turbine governing system is a time-varying complex system with strong non-linearity, and its dynamic characteristics are jointly affected by hydraulic, mechanical, electrical, and other factors. Aiming at the stability of the hydro-turbine governing system, this paper first builds a dynamic model of the hydro-turbine governing system through mechanism modeling, and introduces the transfer coefficient characteristics under different load conditions to obtain the stability category of the system. BP neural network is used to perform the machine study and the predictive analysis of the stability of the system under different working conditions is carried out by using the additional momentum method to optimize the algorithm. The test set results show that the method can accurately distinguish the stability category of the hydro-turbine governing system (HTGS), and the research results can provide a theoretical reference for the operation and management of smart hydropower stations in the future.
Keywords:  hydro-turbine governing system      stability      machine learning      dynamic model  
Received:  06 April 2021      Revised:  13 May 2021      Accepted manuscript online:  25 May 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  45.20.dh (Energy conservation)  
Corresponding Authors:  Yuansheng Chen     E-mail:  chenyuanshengants@163.com

Cite this article: 

Yuansheng Chen(陈元盛) and Fei Tong(仝飞) Stability analysis of hydro-turbine governing system based on machine learning 2021 Chin. Phys. B 30 120509

[1] Gao X, Chen D Y, Zhang H, Xu B B and Wang X Y 2018 Chin. Phys. B 27 128202
[2] Han Q S, Chen D Y and Zhang H 2017 Chin. Phys. B 26 128202
[3] Zhang Y N, Liu K H, Xian H Z and Du X Z 2018 Renew. Sust. Energ. Rev. 81 1269
[4] Shrestha U and Choi Y D 2020 J. Mech. Sci. Technol. 34 3647
[5] Yan D L, Zheng Y, Wang W Y and Chen Q J 2020 Appl. Math. Model. 89 731
[6] Li K and Y Han 2018 Trans. Inst. Meas. Control 40 903
[7] Qu F L and Guo W C 2021 Int. J. Electr. Power Energy Syst. 124 106336
[8] Guo P C, Zhang H and Sun L G 2020 Mod. Phys. Lett. B 34 2050125
[9] Lai X J, Li C S, Guo W C, Xu Y H and Li Y G 2019 Commun. Nonlinear Sci. Numer. Simul. 79 104919
[10] Li J L, Chen D Y, Zhang H and Liu J 2019 J. Comput. Nonlinear Dyn. 14 111003
[11] Manhas S, Tarerh S and Singh D 2020 Mod. Phys. Lett. B 34 2050366
[12] Liu T W, Sun S W, Liu H, An N and Zhou J X 2021 Mod. Phys. Lett. B 35 2150033
[13] Sidhu R K, Kumar R and Rana P S 2020 Mod. Phys. Lett. B 34 2050418
[14] Han W, Liu Y, Gong C Y, Su Y L, Guo P Y, Su M, Shi F X and Wei Z Z 2020 Mod. Phys. Lett. B 34 2050094
[15] Zhang H, Guo P C and Sun L G 2020 Renew. Energy 152 34
[16] Zhang Y Q, Xu Y H, Zheng Y, Rodriguez E F, Liu H W and Feng J 2019 Math. Probl. Eng. 2019 8262074
[17] Zhang H, Chen D Y, Wu C Z and Wang X Y 2018 Commun. Nonlinear Sci. Numer. Simul. 54 136
[18] Qian J, Zeng Y, Guo Y K and Zhang L X 2016 Nonlinear Dyn. 86 963
[19] Zhou J X, Karney B W, Hu M and Xu J C 2011 Proc. Inst. Mech. Eng. Part A-J. 225 1132
[20] Yu X, Zhang J and Miao D 2015 ASCE J. Hydraul. Eng. 141 05014010
[21] Zeng Y, Zhang L X, Guo Y K and Qian J 2015 Int. J. Control Autom. Syst. 13 867
[22] Guo H X, Wan F, Pan W W and Gu M Y 2021 J. Clean Prod. 288 125628
[23] Li L Y, Zhou J L, Wei T Q, Chen M S and Hu X S 2021 IEEE Trans. Comput. 70 581
[24] Huang L J, Xie G J, Zhao W D, Gu Y and Huang Y 2021 Complex Intell. Syst.
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[10] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[11] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[12] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[13] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[14] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[15] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
No Suggested Reading articles found!