Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014203    DOI: 10.1088/1674-1056/abb228
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis

Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿)†, Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲)
College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
Abstract  Simultaneous bandwidth (BW) enhancement and time-delay signature (TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers (MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression (characterized by autocorrelation function (ACF) and permutation entropy (PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters (detuning and injection strength) for the larger BW (> 20 GHz) are broadened considerably, while the parameter range for optimized TDS (< 0.1) is not shrunk obviously. Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW (>20 GHz) and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.
Keywords:  random distributed feedback-based optical injection      two-channel chaos lasing      bandwidth enhancement and time-delay signature suppression      physical random number generation  
Received:  31 May 2020      Revised:  05 July 2020      Accepted manuscript online:  25 August 2020
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Zz (Random lasers)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the Sichuan Science and Technology Program, China (Grant No. 2019YJ0530), the Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 18ZA0401), the Innovative Training Program for College Student of Sichuan Normal University, China (Grant No. S20191063609), and the National Natural Science Foundation of China (Grant No. 61205079).
Corresponding Authors:  Corresponding author. E-mail: jiaxh_0@126.com   

Cite this article: 

Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲) Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis 2021 Chin. Phys. B 30 014203

1 Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garc\'ía-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
2 Takiguchi Y, Ohyagi K and Ohtsubo J 2003 Opt. Lett. 28 319
3 Sciamanna M and Shore K A 2015 Nat. Photon. 9 151
4 Wu J G, Wu Z M, Liu Y R, Fan L, Tang X and Xia G Q 2013 J. Lightw. Technol. 31 461
5 Liu J, Wu Z M and Xia G Q 2009 Opt. Express 17 12619
6 Xue C P, Jiang N, Lv Y X, Wang C, Li G L, Lin S Q and Qiu K 2016 Opt. Lett. 41 3690
7 Zhao A K, Jiang N, Chang C C, Wang Y J, Liu S Q and Qiu K 2020 Opt. Express 28 13292
8 Jiang N, Zhao A K, Xue C P, Tang J M and Qiu K 2019 Opt. Lett. 44 1536
9 Lin F Y and Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
10 Wang Y C, Wang B J and Wang A B2008 IEEE Photon. Technol. Lett. 20 1638
11 Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J and Wang Y C 2012 J. Lightw. Technol. 30 3420
12 Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K and Davis P 2008 Nat. Photon. 2 728
13 Kanter I, Aviad Y, Reidler I, Cohen E and Rosenbluh M 2010 Nat. Photon. 4 58
14 Li P, Wang Y C and Zhang J Z 2010 Opt. Express 18 20360
15 Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Arai K, Yoshimura K and Davis P 2012 IEEE Photon. Technol. Lett. 24 1042
16 Sakuraba R, Iwakawa K, Kanno K and Uchida A 2015 Opt. Express 23 1470
17 Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T and Davis P 2010 Opt. Express 18 5512
18 Takahashi R, Akizawa Y, Uchida A, Harayama T, Tsuzuki K, Sunada S, Arai K, Yoshimura K and Davis P 2014 Opt. Express 22 11727
19 Li X Z and Chan S C 2013 IEEE J. Quantum Electron. 49 829
20 Argyris A, Deligiannidis S, Pikasis E, Bogris A and Syvridis D 2010 Opt. Express 18 18763
21 Reidler I, Aviad Y, Rosenbluh M and Kanter I 2009 Phys. Rev. Lett. 103 024102
22 Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S and Pan W 2014 Opt. Express 22 6634
23 Xiang S Y, Ren Z X, Zhang Y H, Song Z W and Hao Y 2020 Opt. Lett. 45 1104
24 Zhang M J, Niu Y N, Zhao T, Zhang J Z, Liu Y, Xu Y H, Meng J, Wang Y C and Wang A B 2018 Chin. Phys. B 27 050502
25 Li X F, Pan W, Luo B and Ma B 2006 IEEE J. Quantum Electron. 42 953
26 Mu P H, Pan W and LI N Q 2018 Opt. Express 26 15642
27 Lin F Y and Liu J M 2003 IEEE J. Quantum Electron. 39 562
28 Chiang M C, Chen H F and Liu J M 2005 IEEE J. Quantum Electron. 41 1333
29 Wang A B, Yang Y B, Wang B J, Zhang B B, Li L and Wang Y C 2013 Opt. Express 21 8701
30 Ma Y T, Xiang S Y, Guo X X, Song Z W, Wei A J and Hao Y 2019 Opt. Express 28 1665
31 Jiang N, Zhao A K, Liu S Q, Xue C P, Wang B Y and Qiu K 2018 Opt. Lett. 43 5359
32 Wu J G, Xia G Q and Wu Z M 2009 Opt. Express 17 20124
33 Zhang Y N, Feng Y L, Wang X Q, Zhao Z M, Gao C and Yao Z H 2020 Acta Phys. Sin. 69 090501 (in Chinese)
34 Li S S and Chan S C 2015 IEEE J. Sel. Top. Quantum Electron. 21 1
35 Qi J F, Zhong Z Q, Wang G N, Xia G Q and Wu Z M 2017 Acta Phys. Sin. 66 244207 (in Chinese)
36 Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F and Wang A B 2017 Opt. Express 25 10911
37 Xu Y P, Zhang M J, Zhang L, Lu P, Mihailov S and Bao X Y 2017 Opt. Lett. 42 4107
38 Wang A B, Wang Y C and Wang J F 2009 Opt. Lett. 34 1144
39 Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y and Mu P H 2012 IEEE J. Quantum Electron. 48 1339
40 Xiang S Y, Pan W, Luo B, Yan L S, Zhou X H, Li N Q and Zhu H N 2012 IEEE J. Quantum Electron. 48 1069
41 Kanno K, Uchida A and Bunsen M 2016 Phys. Rev. E 93 032206
42 Wang Y, Xiang S Y, Wang B, Cao X Y, Wen A J and Hao Y 2019 Opt. Express 27 8446
43 Xiang S Y, Pan W, Li N Q, Zhang L Y and Zhu H N 2013 Opt. Commun. 311 294
44 Li N Q, Pan W, Xiang S Y, Yan L S, Luo B and Zou X H 2012 IEEE Photon. Technol. Lett. 24 2187
45 Li Q L, Lu S S, Bao Q, Chen D W, Hu M, Zeng R, Yang G W and Li S Q 2018 Appl. Opt. 57 251
46 Wu J G, Wu Z M, Xia G Q and Feng G Y 2012 Opt. Express 20 1741
47 Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q and Xia G Q 2015 Opt. Express 23 33130
48 Zhang J Z, Li M W, Wang A B, Zhang M J, Ji Y N and Wang Y C 2018 Appl. Opt. 57 6314
49 Xu Y P, Zhang L, Lu P, Mihailov S, Chen L and Bao X Y 2018 Optics and Laser Technol. 109 654
50 Xu Y P, Lu P, Gao S, Xiang D, Lu P, Mihailov S and Bao X Y 2015 Opt. Lett. 40 5514
51 Uchida A2012 Optical Communication with Chaotic Lasers(New York: Wiley-VCH Verlag)
52 Murakami A 2002 Phys. Rev. E 65 056617
53 Murakami A 2003 IEEE J. Quantum Electron. 39 438
54 Murakami A, Kawashima K and Atsuki K 2003 IEEE J. Quantum Electron. 39 1196
55 Zunino L, Rosso O A and Soriano M C2011 IEEE J. Quantum Electron. 17 1250
56 Soriano M C, Zunino L, Rosso O A, Fischer I and Mirasso C R 2011 IEEE J. Quantum Electron. 47 252
57 Xu Y P, Gao S, Lu P, Mihailov S, Chen L and Bao X Y 2016 Opt. Lett. 41 3197
58 Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dary J and Vo S A statistical test suite for the validation of random numbergenerators and pseudo random number generators for cryptographic applications(Information Technology Laboratory, Computer Security Resource Center: Random Bit Generation (RBG))
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[3] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[4] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[7] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[12] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[13] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[14] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[15] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
No Suggested Reading articles found!