ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis |
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅)† |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The nonparaxial propagation of radially polarized chirped Airy beams (RPCAiBs) in uniaxial crystal orthogonal to the optical axis is analytically studied. The effects of the first and the second order chirp factors, and the ratio of the extraordinary refractive index to the ordinary refractive index on the nonparaxial evolution of RPCAiBs in different observation planes are investigated in detail. The results show that when one parameter changes, different components behave differently, and even the same component has various behavior in different directions. The initial slope of RPCAiBs in the x-direction varies more with the first order chirp factor than that in the y-direction. Meanwhile, with the second order chirp factor becoming larger, the depth of the focus of the y-component in the x-direction decreases while that in the y-direction has no difference. In addition, the different ratios of the extraordinary refractive index to the ordinary refractive index change the difference of the depth of the focus between the x-and the y-components.
|
Received: 02 July 2020
Revised: 12 July 2020
Accepted manuscript online: 25 August 2020
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 11775083 and 11374108), the Science and Technology Program of Guangzhou Province, China (Grant No. 2019050001), and the Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation, China (Grant No. pdjh2020a0149). |
Corresponding Authors:
†Corresponding author. E-mail: dmdeng@263.net
|
Cite this article:
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅) Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis 2021 Chin. Phys. B 30 014204
|
1 Berry M V and Balazs N L 1979 Am. J. Phys. 47 264 2 Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979 3 Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901 4 Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2008 Opt. Lett. 33 207 5 Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880 6 Efremidis N K, Chen Z G, Segev M and Christodoulides D N 2019 Optica 6 686 7 Baumgartl J, Mazilu M and Dholakia K 2008 Nat. Photon. 2 675 8 Vettenburg T, Dalgarno H I, Nylk J, Coll-Lladò C, Ferrier D E, \vCi\vzmàr T, Gunn-Moore F J and Dholakia K 2014 Nat. Methods 11 541 9 Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2010 Phys. Rev. Lett. 105 253901 10 Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S 2013 Nat. Commun. 4 2622 11 Polynkin P, Kolesik M, Moloney J V, Siviloglou G A and Christodoulides D N 2009 Science 324 229 12 Polynkin P, Kolesik M and Moloney J 2009 Phys. Rev. Lett. 103 123902 13 Xu C J, Hu H C, Liu Y J and Deng D M 2020 Opt. Lett. 45 1451 14 Liu Y J, Xu C J, Lin Z J, Wu Y H, Wu L C and Deng D M 2020 Opt. Lett. 45 2957 15 Wu Y, Lin Z J, Xu C J, Fu X M, Chen K H, Qiu H X and Deng D M 2020 Ann. Phys. 532 2000188 16 Xu C J, Wu Y and Deng D M 2020 Opt. Lett. 45 3502 17 Efremidis N K 2014 Phys. Rev. A 89 023841 18 Zhang Y Q, Beli\'c M R, Zhang L, Zhong W P, Zhu D Y, Wang R M and Zhang Y P 2015 Opt. Express 23 10467 19 Zhang Y Q, Liu X, Beli\'c M R, Zhong W P, Wen F and Zhang Y P 2015 Opt. Lett. 40 3786 20 Li H H, Wang J G, Tang M M, Cao J X and Li X Z 2018 Opt. Commun. 427 147 21 Li H H, Tang M M, Wang J G, Cao J X and Li X Z 2019 Appl. Phys. B 125 51 22 Li H H, Wang J G, Tang M M and Li X Z 2018 J. Mod. Opt. 65 314 23 Li H H, Wang J G, Tang M M and Li X Z 2017 J. Opt. Soc. Am. A 34 1114 24 Li H H, Wang J G, Tang M M and Li X Z 2017 J. Mod. Opt. 64 2363 25 Zhang L F, Liu K, Zhong H Z, Zhang J G, Li Y and Fan D Y 2015 Opt. Express 23 2566 26 Driben R, Konotop V V and Meier, T 2014 Opt. Lett. 39 5523 27 Liu Y J, Xu C J, Wu L C and Deng D M 2020 Opt. Commun. 454 124494 28 Ciattoni A, Crosignani B and Porto P D 2001 J. Opt. Soc. Am. A 18 1656 29 Ciattoni A, Cincotti G and Palma C 2002 J. Opt. Soc. Am. A 19 1422 30 Ciattoni A and Palma C 2003 J. Opt. Soc. Am. A 20 2163 31 Laabs H 1998 Opt. Commun. 147 1 32 Agrawal G P and Pattanayak D N 1979 J. Opt. Soc. Am. 69 575 33 Duan K L and Lü B D 2003 Opt. Express 11 1474 34 Deng D M and Guo Q 2009 J. Opt. Soc. Am. B 26 2044 35 Born M and Wolf E2013 Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(Amerstam: Elsevier) 36 Li D D, Peng X, Peng Y L, Zhang L P and Deng D M 2017 J. Opt. Soc. Am. B 34 891 37 Deng D M and Guo Q 2007 Opt. Lett. 32 2711 38 Zhan Q 2009 Adv. Opt. Photon. 1 1 39 Hnatovsky C, Shvedov V, Krolikowski W and Rode A 2011 Phys. Rev. Lett. 106 123901 40 Novotny L, Beversluis M R, Youngworth K S and Brown T G 2001 Phys. Rev. Lett. 86 5251 41 Varin C and Piché M 2002 Appl. Phys. B 74 s83 42 Salamin Y I 2007 Opt. Lett. 32 90 43 Nesterov A V and Niziev V G 2000 J. Phys. D 33 1817 44 Niziev V G and Nesterov A V 1999 J. Phys. D 32 1455 45 Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y and Sasada H 1997 Phys. Rev. Lett. 78 4713 46 Gahagan K T and Swartzlander G A 1999 J. Opt. Soc. Am. B 16 533 47 Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L P, Zhu S W, Lei T and Yuan X C 2013 Nat. Commun. 4 2891 48 Zhong T F, Zhang J B, Feng L Y, Pang Z H, Wang L Y and Deng D M 2018 J. Opt. Soc. Am. B 35 1354 49 Yang Q, Zhu W Z, Xu C J, Lu M Y, Chen X P, Deng D M and Huang L Q 2019 J. Opt. Soc. Am. A 36 994 50 Wu X L, Xie J T and Deng D M 2019 Appl. Phys. B 125 87 51 Xie J T, Zhang J B, Zheng X T, Ye J R and Deng D M 2018 Opt. Express 26 11309 52 Khonina S N, Alferov S V and Karpeev S V 2013 Opt. Lett. 38 3223 53 Khonina S N and Kharitonov S I 2015 J. Mod. Opt. 62 125 54 Wang H F, Shi L P, Lukyanchuk B S, Sheppard C J R and Chong C T 2008 Nat. Photon. 2 501 55 Fadeyeva T A, Shvedov V G, Izdebskaya Y V, Volyar A V, Brasselet E, Neshev D N, Desyatnikov A S, Krolikowski W and Kivshar Y S 2010 Opt. Express 18 10848 56 Khonina S N, Porfirev A P and Kazanskiy N L 2020 Sci. Rep. 10 5590 57 Chremmos I, Efremidis N K and Christodoulides D N 2011 Opt. Lett. 36 1890 58 Khonina S N, Porfirev A P and Ustinov A V 2018 J. Opt. 20 025605 59 Li J S, Gao X M, Zhuang S L and Huang C Q 2010 Optik 121 821 60 Khonina S N, Ustinov A V and Porfirev A P 2019 J. Opt. Soc. Am. A 36 1039 61 Gradshteyn I S and Ryzhik I M2014 Table of integrals, series, and products(New York: Academic) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|