Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016402    DOI: 10.1088/1674-1056/abd394
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Temperature-induced phase transition of two-dimensional semiconductor GaTe

Xiaoyu Wang(王啸宇)1,†, Xue Wang(王雪)1,†, Hongshuai Zou(邹洪帅)1, Yuhao Fu(付钰豪)2, Xin He(贺欣)1,‡, and Lijun Zhang(张立军)1,§
1 State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China; 2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  GaTe is a two-dimensional III-VI semiconductor with suitable direct bandgap of ∼ 1.65 eV and high photoresponsivity, which makes it a promising candidate for optoelectronic applications. GaTe exists in two crystalline phases: monoclinic (m-GaTe, with space group C2/m) and hexagonal (h-GaTe, with space group P63/mmc). The phase transition between the two phases was reported under temperature-varying conditions, such as annealing, laser irradiation, etc. The explicit phase transition temperature and energy barrier during the temperature-induced phase transition have not been explored. In this work, we present a comprehensive study of the phase transition process by using first-principles energetic and phonon calculations within the quasi-harmonic approximation framework. We predicted that the phase transition from h-GaTe to m-GaTe occurs at the temperature decreasing to 261 K. This is in qualitative agreement with the experimental observations. It is a two-step transition process with energy barriers 199 meV and 288 meV, respectively. The relatively high energy barriers demonstrate the irreversible nature of the phase transition. The electronic and phonon properties of the two phases were further investigated by comparison with available experimental and theoretical results. Our results provide insightful understanding on the process of temperature-induced phase transition of GaTe.
Keywords:  two-dimensional semiconductor GaTe      temperature-induced phase transition      first-principles calculation      quasi-harmonic approximation  
Received:  08 November 2020      Revised:  23 November 2020      Accepted manuscript online:  25 November 2020
PACS:  64.60.-i (General studies of phase transitions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  81.05.Hd (Other semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62004080), Postdoctoral Innovative Talents Supporting Program (Grant No. BX20190143), China Postdoctoral Science Foundation (2020M670834), and Jilin Province Science and Technology Development Program, China (Grant No. 20190201016JC).
Corresponding Authors:  Xiaoyu Wang and Xue Wang contributed equally to this work. Corresponding author. E-mail: xin_he@jlu.edu.cn §Corresponding author. E-mail: lijun_zhang@jlu.edu.cn   

Cite this article: 

Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军) Temperature-induced phase transition of two-dimensional semiconductor GaTe 2021 Chin. Phys. B 30 016402

1 Zhao X G, Shi Z, Wang X, Zou H, Fu Y and Zhang L 2020 InfoMat
2 Wang Z, Zhao D, Yu S, Nie Z, Li Y and Zhang L 2019 Progress in Natural Science: Materials International 29 316
3 Shi Q, Dong B, He T, Sun Z, Zhu J, Zhang Z and Lee C 2020 InfoMat 2 1131
4 Yu F, Hu M, Kang F and Lv R 2018 Progress in Natural Science: Materials International 28 563
5 Huang B Q, Zhou T G, Wu D X, Zhang Z F and Li B K 2019 Acta Phys. Sin. 68 246301 (in Chinese)
6 \cCí nar K, \cCaldí ran Z, Co\cskun C and Aydo\ugan \cS 2014 Thin Solid Films 550 40
7 Pal S and Bose D N 1996 Solid State Commun. 97 725
8 Wang Y, Tian F, Li D, Duan D, Xie H, Liu B, Zhou Q and Cui T 2019 Chin. Phys. B 28 056104
9 Liu F, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I and Tanigaki K 2014 ACS Nano 8 752
10 Wang F, Wang Z, Xu K, Wang F, Wang Q, Huang Y, Yin L and He J 2015 Nano Lett. 15 7558
11 Yang S, Wang C, Ataca C, Li Y, Chen H, Cai H, Suslu A, Grossman J C, Jiang C, Liu Q and Tongay S 2016 ACS Appl. Mater. Interfaces 8 2533
12 Kang J, Sangwan V K, Lee H S, Liu X and Hersam M C 2018 ACS Photon. 5 3996
13 Kolesnikov N N, Borisenko E B, Borisenko D N and Timonina A V 2013 Journal of Crystal Growth 365 59
14 Balitskii O A, Jaeckel B and Jaegermann W 2008 Phys. Lett. A 372 3303
15 Gillan E G and Barron A R 1997 Chem. Mater. 9 3037
16 Semiletov S A and Vlasov V A1963 Kristallografiya 8 877
17 Finkman E and Rizzo A 1974 Solid State Commun. 15 1841
18 Chevy A, Kuhn A and Martin M S 1977 Journal of Crystal Growth 38 118
19 Shen G, Chen D, Chen P C and Zhou C 2009 ACS Nano 3 1115
20 Yu Y, Ran M, Zhou S, Wang R, Zhou F, Li H, Gan L, Zhu M and Zhai T 2019 Adv. Funct. Mater. 29 1901012
21 Zhao Q, Wang T, Miao Y, Ma F, Xie Y, Ma X, Gu Y, Li J, He J, Chen B, Xi S, Xu L, Zhen H, Yin Z, Li J, Ren J and Jie W 2016 Phys. Chem. Chem. Phys. 18 18719
22 McKinley J L and Beran G J O 2019 J. Chem. Theory Comput. 15 5259
23 Henkelman G, Uberuaga B P and Jònsson H 2000 The Journal of Chemical Physics 113 9901
24 Henkelman G and Jònsson H 2000 The Journal of Chemical Physics 113 9978
25 Kresse G and Furthmüller J 1996 Computational Materials Science 6 15
26 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
27 Wang X, Huang S X, Luo H, Deng L W, Wu H, Xu Y C, He J and He L H 2019 Acta Phys. Sin. 68 187301 (in Chinese)
28 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
29 Vetterling W T, Teukolsky S A, Press W H and Flannery B P1989 Numerical recipes (New York: Cambridge University Press)
30 Klime\vs J, Bowler D R and Michaelides A 2009 J. Phys.: Condens. Matter 22 022201
31 Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
32 Liu Z, Na G, Tian F, Yu L, Li J and Zhang L 2020 InfoMat 2 879
33 Yin W, Wen B, Ge Q, Wei X, Teobaldi G and Liu L 2020 Progress in Natural Science: Materials International 30 128
34 Chen A, Zhang X and Zhou Z 2020 InfoMat 2 553
35 Tang X, Gu J, Shang J, Chen Z and Kou L 2020 InfoMat
36 Wang Z, Jiang C, Fang Q, Liu F, Liu B, Fan T, Ma L and Tang P 2020 Progress in Natural Science: Materials International 30 424
37 Wei Y K, Ge N N, Chen X R, Ji G F, Cai L C and Gu Z W 2014 J. Appl. Phys. 115 124904
38 Wang R, Wang S and Wu X 2011 Phys. Scr. 83 065707
39 McKinley J L and Beran G J O 2018 Faraday Discuss. 211 181
40 Kaur K and Kumar R 2016 Progress in Natural Science: Materials International 26 533
41 Hu S Z and Parthé E2004 Jiegou Huaxue 23 11
42 Shenoy U S, Gupta U, Narang D S, Late D J, Waghmare U V and Rao C N R 2016 Chemical Physics Letters 651 148
43 Sun Y, Li Y, Li T, Biswas K, Patan\`e A and Zhang L 2020 Adv. Funct. Mater. 30 2001920
44 Lu P, Kim J S, Yang J, Gao H, Wu J, Shao D, Li B, Zhou D, Sun J, Akinwande D, Xing D and Lin J F 2016 Phys. Rev. B 94 224512
45 Brebner J, Fischer G and Mooser E 1962 Journal of Physics and Chemistry of Solids 23 1417
46 Tatsuyama C, Watanabe Y, Hamaguchi C and Nakai J 1970 J. Phys. Soc. Jpn. 29 150
47 Vega J J F2017 Bandgap engineering of gallium telluride (Berkeley: University of California)
48 Susoma J, Lahtinen J, Kim M, Riikonen J and Lipsanen H 2017 AIP Advances 7 015014
49 Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R and Dresselhaus M S 2016 ACS Nano 10 8964
50 Bae C J, McMahon J, Detz H, Strasser G, Park J, Einarsson E and Eason D B 2017 AIP Advances 7 035113
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!