Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 095205    DOI: 10.1088/1674-1056/ab9618
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Novel compact and lightweight coaxial C-band transit-time oscillator

Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力)
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  Compactness and miniaturization have become increasingly important in the development of high-power microwave devices. Based on this rising demand, a novel C-band coaxial transit-time oscillator (TTO) with a low external guiding magnetic field is proposed and analyzed. The proposed device has the following advantages: simple structure, short axial length, high power conversion efficiency, and low external guiding magnetic field, which are of great significance for developing the compact and miniaturized high-power microwave devices. The application of a shorter axial length is made possible by the use of a transit radiation mechanism. Also, loading the opening foil symmetrically to both ends of the buncher helps reduce the external magnetic field of the proposed device. Unlike traditional foils, the proposed opening foil has a circular-hole; therefore, the electron beam will not bombard the conductive foil to generate plasma. This makes it possible to realize long pulse and high repetition rate operation of the device in future experiments. Through numerical calculation and PIC particle simulation, the stability of the intense relativistic electron beam (IREB) and the saturation time of the device are improved by using the conductive foil. The voltage and current of the diode are 548 kV and 11.4 kA, respectively. Under a 0.4-T external guiding magnetic field, a C-band output microwave with a frequency of 4.27 GHz and power of 1.88 GW can be generated. The power conversion efficiency of the proposed device is about 30%.
Keywords:  low guiding magnetic field      foil focus      simple structure      short axial length  
Received:  28 March 2020      Revised:  08 May 2020      Accepted manuscript online:  25 May 2020
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61701516).
Corresponding Authors:  Jun-Tao He     E-mail:  hejuntao12@163.com

Cite this article: 

Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力) Novel compact and lightweight coaxial C-band transit-time oscillator 2020 Chin. Phys. B 29 095205

[1] Klimov A I, Korovin S D, Rostov V V and Tot'meninov E M 2006 Phys. Lett. 32 120
[2] Totmeninov E M, Klimov A I and Rostov V V 2010 IEEE Trans. Plasma Sci. 38 2944
[3] Totmeninov E M, Kitsanov S A and Vykhodtsev P V 2011 IEEE Trans. Plasma Sci. 39 1150
[4] Tot'meninov E M, Stepchenko A S, Rostov V V and Klimov A I 2018 Technical Phys. 63 581
[5] Haworth M D, Baca G, Benford J, Englert T, Hackett K, Hendricks K J, Henley D, LaCour M, Lemke R W, Price D, Ralph D, Sena M, Shiffler D and Spencer T A 1998 IEEE Trans. Plasma Sci. 26 312
[6] Fan Y W, Shu T, Liu Y G, Huang H Z, Li Z Q, Wang Y, Zhao Y S and Luo L 2005 Chin. Phys. Lett. 22 164
[7] Li Z Q, Zhong H H, Fan Y W, Shu T, Qian B L, Xu L R and Zhao Y S 2009 Chin. Phys. Lett. 26 055201
[8] Cao Y B, Zhang J D and He J T 2009 Phys. Plasmas 16 083102
[9] Cao Y B, He J T, Zhang J D, Zhang Q and Ling J P 2012 Phys. Plasmas 19 072106
[10] Ling J P, Zhang J D, He J T and Jiang T 2014 Phys. Plasmas 21 023114
[11] Levush B, Antonsen T M, Bromborsky A, Lou W-R and Carmel Y 1992 IEEE Trans. Plasma Sci. 20 263
[1] The intermittent excitation of geodesic acoustic mode by resonant Instanton of electron drift wave envelope in L-mode discharge near tokamak edge
Zhao-Yang Liu(刘朝阳), Yang-Zhong Zhang(章扬忠), Swadesh Mitter Mahajan, A-Di Liu(刘阿娣), Chu Zhou(周楚), and Tao Xie(谢涛). Chin. Phys. B, 2022, 31(4): 045202.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[4] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[5] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[6] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[7] Nonlinear ion-acoustic solitary waves in an electron-positron-ion plasma with relativistic positron beam
Ridip Sarma, Amar P Misra, Nirab C Adhikary. Chin. Phys. B, 2018, 27(10): 105207.
[8] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[9] Upstream ion wave excitation in an ion-beam-plasma system
Kai-Yang Yi(弋开阳), Jin-Xiu Ma(马锦秀), Zi-An Wei(卫子安), Zheng-Yuan Li(李政元). Chin. Phys. B, 2018, 27(5): 055201.
[10] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[11] Schamel equation in an inhomogeneous magnetized sheared flow plasma with q-nonextensive trapped electrons
Shaukat Ali Shan, Qamar-ul-Haque. Chin. Phys. B, 2018, 27(2): 025203.
[12] Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma
M S Alam, M G Hafez, M R Talukder, M Hossain Ali. Chin. Phys. B, 2017, 26(9): 095203.
[13] Drift vortices in inhomogeneous collisional dusty magnetoplasma
Jian-Rong Yang(杨建荣), Kui Lv(吕岿), Lei Xu(许磊), Jie-Jian Mao(毛杰键), Xi-Zhong Liu(刘希忠), Ping Liu(刘萍). Chin. Phys. B, 2017, 26(6): 065202.
[14] Application of multi-pulse optical imaging to measure evolution of laser-produced counter-streaming flows
Dawei Yuan(袁大伟), Yutong Li(李玉同), Baojun Zhu(朱保君), Yanfei Li(李彦霏), Jiayong Zhong(仲佳勇), Huigang Wei(魏会冈), Chang Liu(刘畅), Xiaoxia Yuan(原晓霞), Zhe Zhang(张喆), Guiyun Liang(梁贵云), Feilu Wang(王菲鹿), Fang Li(李芳), Jiarui Zhao(赵家瑞), Neng Hua(华能), Baoqiang Zhu(朱宝强), Jianqiang Zhu(朱健强), Shaoen Jiang(江少恩), Kai Du(杜凯), Yongkun Ding(丁永坤), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 054206.
[15] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
No Suggested Reading articles found!