Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 118401    DOI: 10.1088/1674-1056/aba2e1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations

Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新)
Hunan Key Laboratory for Micro-Nano Energy Materials & Device and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
Abstract  

The diamond-like cubic silicon (d-Si) is widely used in modern electronics and solar cell industries. However, it is not an optimal candidate for thermoelectric application due to its high lattice thermal conductivity. Si (oP32) is a recently predicted orthorhombic silicon allotrope, whose total energy is close to that of d-Si. Using first-principles calculations and Boltzmann transport theory, we systematically investigate the thermoelectric properties of Si (oP32). The lower phonon thermal conductivity and higher power factor are obtained in Si (oP32) than those in diamond silicon. The low phonon thermal conductivity (33.77 W/mK at 300 K) is mainly due to the reduction of the phonon group velocity and enhancement of phonon–phonon scattering (including scattering phase space and strength). Meanwhile, the results also show that the thermoelectric performance along the zz lattice direction is better than that along the xx and yy lattice directions, and the figure of merit (700 K) along the zz lattice direction could approach to 2.45 and 1.75 for p-type and n-type Si (oP32), respectively. The values are much higher than those of d-Si (about 0.06)) and Si24 (0.6), indicating that the Si (oP32) is a promising candidate for thermoelectric applications. Our theoretical studies shed light on the thermoelectric properties of Si (oP32) and could stimulate further experimental studies.

Keywords:  thermoelectric      Si (oP32)      lattice thermal conductivity      first-principles  
Received:  05 May 2020      Revised:  29 June 2020      Accepted manuscript online:  06 July 2020
Fund: the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13093), the National Natural Science Foundation of China (Grant Nos. 11304262 and 11404275), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 17B252, 17K086, and 16K084), the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3118), and the Xiangtan University Innovation Foundation for Postgraduate, Hunan Province, China (Grant No. XDCX2020B095).
Corresponding Authors:  Corresponding author. E-mail: ouyangtao@xtu.edu.cn Corresponding author. E-mail: jxzhong@xtu.edu.cn   

Cite this article: 

Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新) Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations 2020 Chin. Phys. B 29 118401

Fig. 1.  

(a) Crystal structure of Si (oP32), (b) electronic band structure, and (c) electronic density of states (DOS) of Si (oP32). The special point coordinates in Brillouin zone are G (0, 0, 0), X (0.5, 0, 0), S (0.5, 0.5, 0), Y (0, 0.5, 0), G (0, 0, 0), Z (0, 0, 0.5), U (0.5, 0, 0.5), R (0.5, 0.5, 0.5), T (0, 0.5, 0.5), and Z (0, 0, 0.5).

Fig. 2.  

(a) Phonon dispersion along different high-symmetry paths and (b) phonon density of states (PDOS) of Si (oP32).

Fig. 3.  

(a) Calculated lattice thermal conductivity with respect to temperature for Si (oP32) and d-Si. (b) Lattice thermal conductivity of Si (oP32) and d-Si at 300 K and inset shows the anisotropic factor (| κακave |/κave, α = xx, yy, zz).

Fig. 4.  

(a) Group velocity, (b)phonon relaxation time, (c) Grüneisen parameter, and (d) three-phonon scattering phase space of Si (oP32) and d-Si versus frequency at room temperature.

Carrier type El/eV C3D/(eV/A3) m*/me μ/cm2⋅V–1⋅s−1 τ/10–13 s
Electron (xx) –8.54 0.876 0.836 327.06 1.56
Hole (xx) –5.65 2.685 40.41 0.617
Electron (yy) –10.30 0.930 0.221 6643.20 8.35
Hole (yy) –8.69 0.660 605.53 2.23
Electron (zz) –6.23 1.066 0.437 3785.53 9.40
Hole (zz) –17.21 0.139 8693.76 6.87
Table 1.  

Values of DP constant E1, elastic constant C3D, effective mass m*, carrier mobility μ, and scattering time τ for electrons and holes along three directions in Si (oP32) at 300 K.

Fig. 5.  

Plots of [(a)–(c)] electrical conductivity, [(e)–(f)] Seebeck coefficient, [(g)–(i))] power factor, and [(j)–(l))] electronic thermal conductivity versus chemical potential at different temperatures along xx (left panels), yy (middle panels) and zz (right panels) directions.

Fig. 6.  

Plots of thermoelectric figure of merit (ZT) versus chemical potential along (a) xx, (b) yy, and (c) zz (c) lattice directions of Si (oP32) at different temperatures.

[1]
Böttner H, Chen G, Venkatasubramanian R 2006 MRS Bull. 31 211 DOI: 10.1557/mrs2006.47
[2]
Majumdar A 2004 Science 303 777 DOI: 10.1126/science.1093164
[3]
Sales B C 2002 Science 295 1248 DOI: 10.1126/science.1069895
[4]
Ouyang Y, Zhang Z, Li D, Chen J, Zhang G 2019 Annalen der Physik 531 1800437 DOI: 10.1002/andp.v531.4
[5]
Snyder G J, Toberer E S 2008 Nat. Mater. 7 105 DOI: 10.1038/nmat2090
[6]
Zhang X, Zhao L D 2015 J. Mater. 1 92 DOI: 10.1016/j.jmat.2015.01.001
[7]
Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554 DOI: 10.1126/science.1159725
[8]
Li T, Yu J, Nie G, Zhang B P, Sun Q 2020 Nano Energy 67 104283 DOI: 10.1016/j.nanoen.2019.104283
[9]
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373 DOI: 10.1038/nature13184
[10]
Min Hong Z G C, Zou Jin 2018 Chin. Phys. B 27 48403 DOI: 10.1088/1674-1056/27/4/048403
[11]
Li Y N, Wu P, Zhang S P, Chen S, Yan D, Yang J G, Wang L, Huai X L 2018 Chin. Phys. B 27 057201 DOI: 10.1088/1674-1056/27/5/057201
[12]
Petter Jelle B, Breivik C, Drolsum Røkenes H 2012 Sol. Energy Mater. Sol. Cells 100 69 DOI: 10.1016/j.solmat.2011.12.016
[13]
Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922 DOI: 10.1063/1.2822891
[14]
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard Iii W A, Heath J R 2008 Nature 451 168 DOI: 10.1038/nature06458
[15]
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163 DOI: 10.1038/nature06381
[16]
Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Func. Mater. 19 2445 DOI: 10.1002/adfm.v19:15
[17]
Wang Q, Xu B, Sun J, Liu H, Zhao Z, Yu D, Fan C, He J 2014 J. Am. Chem. Soc. 136 9826 DOI: 10.1021/ja5035792
[18]
Kim D Y, Stefanoski S, Kurakevych O O, Strobel T A 2015 Nat. Mater. 14 169 DOI: 10.1038/nmat4140
[19]
Mujica A, Pickard C J, Needs R J 2015 Phys. Rev. B 91 214104 DOI: 10.1103/PhysRevB.91.214104
[20]
Beekman M, Wei K, Nolas G S 2016 Appl. Phys. Rev. 3 040804 DOI: 10.1063/1.4953165
[21]
He C, Zhang C, Li J, Peng X, Meng L, Tang C, Zhong J 2016 Phys. Chem. Chem. Phys. 18 9682 DOI: 10.1039/C6CP00451B
[22]
Cai X H, Yang Q, Pang Y, Wang M 2020 Comput. Mater. Sci. 173 109441 DOI: 10.1016/j.commatsci.2019.109441
[23]
Oreshonkov A S, Roginskii E M, Atuchin V V 2020 J. Phys. Chem. Solids 137 109219 DOI: 10.1016/j.jpcs.2019.109219
[24]
Tang Z, Litvinchuk A P, Gooch M, Guloy A M 2018 J . Am. Chem. Soc. 140 6785 DOI: 10.1021/jacs.8b03503
[25]
Blochl P E 1994 Phys. Rev. B 50 17953 DOI: 10.1103/PhysRevB.50.17953
[26]
Kresse G, Joubert D 1999 Phys. Rev. B 59 1758 DOI: 10.1103/PhysRevB.59.1758
[27]
Hafner J 2008 J. Comput. Chem. 29 2044 DOI: 10.1002/jcc.v29:13
[28]
Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.3865
[29]
Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401 DOI: 10.1103/PhysRevLett.102.226401
[30]
Ouyang T, Zhang P, Xiao H, Tang C, Li J, He C, Zhong J 2017 J. Phys. D: Appl. Phys. 50 425501 DOI: 10.1088/1361-6463/aa8526
[31]
Zhang P, Ouyang T, Tang C, He C, Li J, Zhang C, Hu M, Zhong J 2018 Model. Simul. Mater. Sci. Eng. 26 085006 DOI: 10.1088/1361-651X/aae401
[32]
Li W, Carrete J A., Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747 DOI: 10.1016/j.cpc.2014.02.015
[33]
Togo A, Tanaka I 2015 Scr. Mater. 108 1 DOI: 10.1016/j.scriptamat.2015.07.021
[34]
Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67 DOI: 10.1016/j.cpc.2006.03.007
[35]
Bardeen J, Shockley W 1950 Phys. Rev. 80 72 DOI: 10.1103/PhysRev.80.72
[36]
Parrish K D, Jain A, Larkin J M, Saidi W A, McGaughey A J H 2014 Phys. Rev. B 90 235201 DOI: 10.1103/PhysRevB.90.235201
[37]
Li W, Mingo N, Lindsay L, Broido D A, Stewart D A, Katcho N A 2012 Phys. Rev. B 85 195436 DOI: 10.1103/PhysRevB.85.195436
[38]
Peng B, Zhang H, Shao H, Lu H, Zhang D W, Zhu H 2016 Nano Energy 30 225 DOI: 10.1016/j.nanoen.2016.10.016
[39]
Zhang P, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2020 Physica E 118 113870 DOI: 10.1016/j.physe.2019.113870
[40]
Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317 DOI: 10.1103/PhysRevB.85.115317
[41]
Kaasbjerg K, Thygesen K S, Jauho A P 2013 Phys. Rev. B 87 235312 DOI: 10.1103/PhysRevB.87.235312
[42]
Fan D D, Liu H J, Cheng L, Jiang P H, Shi J, Tang X F 2014 Appl. Phys. Lett. 105 133113 DOI: 10.1063/1.4897349
[43]
Sun P P, Bai L, Kripalani D R, Zhou K 2019 NPJ Comput. Mater. 5 9 DOI: 10.1038/s41524-018-0146-z
[44]
Zhu X L, Hou C H, Zhang P, Liu P F, Xie G, Wang B T 2020 J. Phys. Chem. C 124 1812 DOI: 10.1021/acs.jpcc.9b09787
[45]
Krali E, Durrani Z A K 2013 Appl. Phys. Lett. 102 143102 DOI: 10.1063/1.4800778
[46]
Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223 DOI: 10.1103/PhysRevB.21.4223
[47]
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597 DOI: 10.1038/35098012
[48]
Chae K, Kang S H, Choi S M, Kim D Y, Son Y W 2018 Nano Lett. 18 4748 DOI: 10.1021/acs.nanolett.8b01176
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[8] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[9] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[10] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[13] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[14] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[15] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
No Suggested Reading articles found!