Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090701    DOI: 10.1088/1674-1056/27/9/090701
GENERAL Prev   Next  

Damage and recovery of fiber Bragg grating under radiation environment

Shi-Zhe Wen(温世喆)1,6, Wei-Chen Xiong(熊伟晨)3,6, Li-Ping Huang(黄力平)4,6, Zhen-Rui Wang(王镇锐)4,6, Xing-Bin Zhang(张兴斌)5,6, Zhen-Hui He(何振辉)2,5,6
1 School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China;
3 School of Engineering, Sun Yat-Sen University, Guangzhou 510006, China;
4 School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
5 School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519000, China;
6 Center for Space Technology, Sun-Yat Sen University, Zhuhai 519000, China

To develop the application of fiber Bragg gratings as temperature and strain sensors in space environments, it is necessary to understand the effect of high-energy radiation on the performance of the fiber Bragg grating. We performed an experiment involving Co60-γ ionizing irradiation with a total dose of 1.01×106 rad on two Ge-doped single-mode fiber Bragg gratings with central wavelengths of 825 and 835 nm, respectively. We found that, with the increase of radiation dose, the redshift of the peak wavelength of the reflection spectrum of the fiber Bragg gratings indicated the increase of the refractive index and the number of color centers. After irradiation, the refractive index decreased with the decreasing number of color centers. We analyzed the influence of ionizing irradiation on the transmission performance of the fiber Bragg gratings using a color-center model, which explained the experimental results. The proposed model was used to determine the creation rate and annihilation rates of the color center, which are foundational data for using the fiber Bragg gratings in space applications.

Keywords:  fiber Bragg grating      radiation      color center      refractive index      damage      recovery      annihilation  
Received:  05 March 2018      Revised:  23 April 2018      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.60.Vg (Fiber-optic instruments)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  

Project supported by the Project for the State Key Laboratory of Optoelectronic Materials and Technologies of China (Grant No. 09010-32031708) and the Project for Zhuhai Key Laboratory of Center for Space Technology of China (Grant No. 71000-42080001).

Corresponding Authors:  Zhen-Hui He     E-mail:

Cite this article: 

Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉) Damage and recovery of fiber Bragg grating under radiation environment 2018 Chin. Phys. B 27 090701

[1] Gusarov A I, Doyle D B, Karafolas N and Berghmans F 2000 Int. Symp. Opt. Sci. Technol. P. 253
[2] Marshall P W, Dale C J and Burke E A 1992 Nucl. Sci. IEEE Trans. 39 1982
[3] Ott M, Plante J, Shaw J, Shaw J, Garrisondarrin M, Ott M, Plante J and Garrisondarrin M 1997 Aiaa Journal
[4] Ferdin, P, Magne S, Marty V and Georges T 1994 Proc. SPIE 2425 11
[5] Gusarov A, Fernandez A F, Vasiliev S, Medvedkov O, Blondel M and Berghmans F 2002 Nucl. Instrum. & Methods Phys. Res. 187 79
[6] Gusarov A I, Berghmans F, Deparis O and Fernandez A F 1999 Photon. Technol. Lett. IEEE 11 1159
[7] Marshall P W, Dale C J, Carts M A and Label K A 1994 Nucl. Sci. IEEE Trans. 41 1958
[8] Girard S, Tortech B, Regnier E, Uffelen M V, Gusarov A, Ouerdane Y, Baggio J, Paillet P, Ferlet-Cavrois V and Boukenter A 2007 IEEE Trans. Nucl. Sci. 54 2426
[9] Zhou C M, Zhang F, Ding L and Jiang D S 2011 Laser & Optoelectronics Prog. 48 9
[10] Holmes Siedle A and Adams L 2001 (Oxford University Press)
[11] Jiang H, Chen B X, Fu C S, Sui G R and Ji S 2010 Acta Phys. Sin. 59 7782 (in Chinese)
[12] Neustruev V B 1994 J. Phys.:Condens. Matter 6 6901
[13] Regnier E, Flammer I, Girard S, Gooijer F, Achten F and Kuyt G 2007 IEEE Trans. Nucl. Sci. 54 1115
[14] Russell P S, PoyntzWright L J and Hand D P 1991 in:San Jose-DL tentative
[15] Xiao Z Y, Luo W Y and Wang T Y 2007 Acta Phys. Sin. 56 2731 (in Chinese)
[16] Ma J, Che C, Yu S Y, Tan L Y, Zhou Y P and Wang J 2012 Acta Phys. Sin. 204 (in Chinese)
[17] Fox B P, Simmons-Potter K, Kliner D A V and Moore S W 2013 J. Non-Cryst. Solids 378 79
[18] Mady F, Benabdesselam M, Mebrouk Y and Dussardier B 2010 Ytterbium-doped Silica Optical Fibers
[19] Jin J, Li Y, Zhang Z C, Wu C X and Song N F 2016 Chin. Phys. B 25 84213
[20] Gan F and ZhN G Q 1989 Crystal Color Center Physics (Shanghai Jiao Tong University Press)
[21] H, D P and Russell P S J 1990 Opt. Lett. 15 102
[22] Song J M, Guo J H, Wang Q X and Hu S L 2012 Laser & Optoelectronics Prog. 58-64
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[6] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[7] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[8] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[9] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[10] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[11] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[12] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[13] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[14] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[15] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
No Suggested Reading articles found!