Special Issue:
SPECIAL TOPIC — Physics in neuromorphic devices
|
TOPICAL REVIEW—Physics in neuromorphic devices |
Prev
Next
|
|
|
Recent progress in optoelectronic neuromorphic devices |
Yan-Bo Guo(郭延博)1,2,3, Li-Qiang Zhu(竺立强)1,2 |
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 3 School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China |
|
|
Abstract Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems. Neuromorphic devices and integrated system with photosensing and response functions can be constructed to mimic complex biological visual sensing behaviors. Here, recent progresses on optoelectronic neuromorphic memristors and optoelectronic neuromorphic transistors are briefly reviewed. A variety of visual synaptic functions stimulated on optoelectronic neuromorphic devices are discussed, including light-triggered short-term plasticities, long-term plasticities, and neural facilitation. These optoelectronic neuromorphic devices can also mimic human visual perception, information processing, and cognition. The optoelectronic neuromorphic devices that simulate biological visual perception functions will have potential application prospects in areas such as bionic neurological optoelectronic systems and intelligent robots.
|
Received: 02 April 2020
Revised: 21 May 2020
Accepted manuscript online:
|
PACS:
|
85.60.-q
|
(Optoelectronic devices)
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51972316), Open Project of State Key Laboratory of ASIC & System (Grant No. 2019KF006), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18F040002), and Program for Ningbo Municipal Science and Technology Innovative Research Team, China (Grant No. 2016B10005). |
Corresponding Authors:
Li-Qiang Zhu
E-mail: zhuliqiang@nbu.edu.cn
|
Cite this article:
Yan-Bo Guo(郭延博), Li-Qiang Zhu(竺立强) Recent progress in optoelectronic neuromorphic devices 2020 Chin. Phys. B 29 078502
|
[1] |
P Yao H Q Gao W B, Eryilmaz S B, Huang X Y., Zhang W Q, Zhang Q T, Deng N, Shi L P, Wong H S P and Qian H 2017 Nat. Commun. 8 15199
|
[2] |
Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A Lanctot M, Sifre L Kumaran D, Graepel T, Lillicrap T, Simonyan K and Hassabis D 2018 Science 362 1140
|
[3] |
Liu C S, Yan X, Song X F, Ding S J, Zhang D W and Zhou P 2018 Nat. Nanotechnol. 13 404
|
[4] |
Manipatruni S, Nikonov D E and Young I A 2018 Nat. Phys. 14 338
|
[5] |
Drachman D A 2005 Neurology 64 2004
|
[6] |
Sengupta B and Stemmler M B 2014 Proc. IEEE 102 738
|
[7] |
Attwell D and Laughlin S B 2001 J. Cereb. Blood Flow Metab. 21 1133
|
[8] |
Cheng Z G, Rios C, Pernice W H P, Wright C D and Bhaskaran H 2017 Sci. Adv. 3 1700160
|
[9] |
Yin J, Zeng F, Wan Q, Li F, Sun Y M, Hu Y D, Liu J L, Li G Q and Pan F 2018 Adv. Funct. Mater. 28 1706927
|
[10] |
Wan C J, Chen G, Fu Y M, Wang M, Matsuhisa N, Pan S W, Pan L, Yang H, Wan Q, Zhu L Q and Chen X D 2018 Adv. Mater. 30 1801291
|
[11] |
Kim Y, Chortos A, Xu W T, Liu Y X, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C X, Lee Y, Niu S M, Liu J, Pfattner R, Bao Z N and Lee T W 2018 Science 360 998
|
[12] |
Xiong W, Zhu L Q, Ye C, Ren Z Y, Yu F, Xiao H, Xu Z, Zhou Y, Zhou H and Lu H L 2020 Adv. Electron. Mater. 6 1901402
|
[13] |
Tuma T, Pantazi A, Gallo M L, Sebastian A and Eleftheriou E 2016 Nat. Nanotechnol. 11 693
|
[14] |
Wang H L, Zhao Q, Ni Z J, Li Q Y, Liu H T, Yang Y C, Wang L F, Ran Y, Guo Y L, Hu W P and Liu Y Q 2018 Adv. Mater. 30 1803961
|
[15] |
Kim K, Chen C L, Truong Q, Shen A M and Chen Y 2013 Adv. Mater. 25 1693
|
[16] |
Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158
|
[17] |
Huang H Y, Ge C, Zhang Q H, Liu C X, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Funct. Mater. 29 1902702
|
[18] |
Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L and Wan Q 2019 Nanoscale 11 1360
|
[19] |
Shao F, Yang Y, Zhu L Q, Feng P and Wan Q 2016 ACS Appl. Mater. Interfaces 8 3050
|
[20] |
Qian C, Kong L, Yang J, Gao Y and Sun J 2017 Appl. Phys. Lett. 110 083302
|
[21] |
Yu F and Zhu L Q 2019 Phys. Status Solidi RRL 13 1800674
|
[22] |
Fu Y M, Wan C J, Yu F, Xiao H, Tao J, Guo Y B, Gao W T and Zhu L Q 2018 Adv. Electron. Mate 4 1800371
|
[23] |
Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S and Hersam M C 2018 Nature 554 500
|
[24] |
Xiong W, Zhu L Q, Ye C, Yu F, Ren Z Y and Ge Z Y 2019 Adv. Electron. Mater. 5 1900439
|
[25] |
Ren Z Y, Zhu L Q, Guo Y B, Long T Y, Yu F, Xiao H and Lu H L 2020 ACS Appl. Mater. Interfaces 12 7833
|
[26] |
Esqueda I S, Yan X D, Rutherglen C, Kane A, Cain T, Marsh P, Liu Q Z, Galatsis K, Wang H and Zhou C W 2018 ACS Nano 12 7352
|
[27] |
Choi S, Tan S H, Li Z, Kim Y, Choi C, Chen P Y, Yeon H, Yu S and Kim J 2018 Nat. Mater. 17 335
|
[28] |
Du C, Cai F, Zidan M A, Ma W, Lee S H and Lu W D 2017 Nat. Commun. 8 2204
|
[29] |
Wan C J, Zhu L Q, Zhou J M, Shi Y and Wan Q 2014 Nanoscale 6 4491
|
[30] |
Jang E K, Parka Y and Lee J S 2019 Nanoscale 11 15382
|
[31] |
Gao W T, Zhu L Q, Tao J, Wan D Y, Xiao H and Yu F 2018 ACS Appl. Mater. Interfaces 10 40008
|
[32] |
Lumpkin E A and Caterina M J 2007 Nature 445 858
|
[33] |
Kim J, Lee M, Shim H J, Ghaffari R, Cho H R, Son D, Jung Y H, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S T, Kim J H, Choi S H, Hyeon T and Kim D H 2014 Nat. Commun. 5 5747
|
[34] |
Bauer S 2013 Nat. Mater. 12 871
|
[35] |
Wang G Z, Wang R B, Kong W Z and Zhang J H 2018 Cogn. Neurodynamics 12 615
|
[36] |
Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H and Park S K 2019 Adv. Mater. 31 1906433
|
[37] |
Wang Y, Lv Z Y, Chen J R, Wang Z P, Zhou Y, L. Zhou, Chen X L and Han S T 2018 Adv. Mater. 30 1802883
|
[38] |
Qian L, Sun Y L, Wu M M, Li C, Xie D, Ding L M and Shi G Q 2018 Nanoscale 10 6837
|
[39] |
Hu D C, Yang R, Jiang L and Guo X 2018 ACS Appl. Mater. Interfaces 10 6463
|
[40] |
Chen S, Lou Z, Chen D and Shen G Z 2018 Adv. Mater. 30 1705400
|
[41] |
Liu Z, Dai S L, Wang Y, Yang B, Hao D D, Liu D P, Zhao Y W, Fang L, Ou Q Q, Jin S, Zhao J W and Huang J 2019 Adv. Funct. Mater 30 1906335
|
[42] |
Qin S C, Wang F Q, Liu Y J, Wan Q, Wang X R, Xu Y B, Shi Y, Wang X M and Zhang R 2017 2D Mater. 4 035022
|
[43] |
Zhai Y B, Yang X Q, Wang F, Li Z X, Ding G L, Qiu Z F, Wang Y, Zhou Y and Han S T 2018 Adv. Mater. 30 1803563
|
[44] |
Zhou W, Yang R, He H K, Huang H M, Xiong J and Guo X 2018 Appl. Phys. Lett. 113 061107
|
[45] |
He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2018 Small 14 1800079
|
[46] |
Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P and Chai Y 2019 Nat. Nanotechnol. 14 776
|
[47] |
Kumar M, Abbas S and Kim J 2018 ACS Appl. Mater. Interfaces 10 34370
|
[48] |
Yu J J, Liang L Y, Hu L X, Duan H X, Wu W H, Zhang H L, Gao J H, Zhuge F, Chang T C and Cao H T 2019 Nano Energy 62 772
|
[49] |
Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B, Yoo P, Cho J H and Park J 2018 Adv. Funct. Mater. 28 1804397
|
[50] |
Huang W, Hang P, Wang Y, Wang K, Han S, Chen Z, Peng W, Zhu Y, Xu M, Zhang Y, Fang Y, Yu X, Yang D and Pi X 2020 Nano Energy 73 104790
|
[51] |
Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B and Huang J 2018 ACS Appl. Mater. Interfaces 10 21472
|
[52] |
Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X and Yang D 2018 Nano Energy 52 422
|
[53] |
Ahmed T, Kuriakose S, Abbas S, Spencer M J S, Rahman M A, Tahir M, Lu Y R, Sonar P, Bansal V, Bhaskaran M, Sriram S and Walia S 2019 Adv. Funct. Mater. 29 1901991
|
[54] |
Ahmed T, Kuriakose S, Mayes E L H, Ramanathan R, Bansal V, Bhaskaran M, Sriram S and Walia S 2019 Small 15 1900966
|
[55] |
Yin L, Han C, Zhang Q T, Ni Z Y, Zhao S Y, Wang K, Li D S, Xu M S, Wu H Q, Pi X D and Yang D R 2019 Nano Energy 63 103859
|
[56] |
Luo Z D, Xia X, Yang M M, Wilson N R, Gruverman A and Alexe M 2020 ACS Nano 14 746
|
[57] |
Zhai Y B, Zhou Y, Yang X Q, Wang F, Ye W B, Zhu X J, She D H, Lu W D and Han S T 2020 Nano Energy 67 104262
|
[58] |
Jaafar A H, Gray R J, Verrelli E, Neill M, Kelly S M and Kemp N T 2017 Nanoscale 9 17091
|
[59] |
Chen Y, Qiu W J, Wang X W, Liu W R, Wang J X, Dai G Z, Yuan Y B, Gao Y L and Sun J 2019 Nano Energy 62 393
|
[60] |
Lee M, Lee W, Choi S, Jo J W, Kim J, Park S K and Kim Y H 2017 Adv. Mater. 29 1700951
|
[61] |
Ma F, Zhu Y, Xu Z, Liu Y, Zheng X, Ju S, Li Q, Ni Z, Hu H, Chai Y, Wu C, Kim T W and Li F 2020 Adv. Funct. Mater. 30 1908901
|
[62] |
Lv Z, Chen M, Qian F, Roy V A L, Ye W, She D, Wang Y, Xu Z X, Zhou Y and Han S T 2019 Adv. Funct. Mater. 29 1902374
|
[63] |
Zhao J, Zhou Z, Wang H, Wang J, Hao W, Ren D, Guo R, Chen J, Liu B and Yan X 2019 Appl. Phys. Lett. 115 153504
|
[64] |
Murdoch B J, Raeber T J, Zhao Z C, Barlow A J, McKenzie D R, McCulloch D G and Partridge J G 2019 Carbon 152 59
|
[65] |
He W X, Fang Y, Yang H H, Wu X M, He L H, Chen H P and Guo T L 2019 J. Mater. Chem. C 7 12523
|
[66] |
Chua L O 1971 IEEE Transactions on circuit theory 18 507
|
[67] |
Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
|
[68] |
Kuzum D, Jeyasingh R G D, Lee B and Wong H S P 2012 Nano Lett. 12 2179
|
[69] |
Gao S, Liu G, Yang H L, Hu C, Chen Q L, Gong G D, Xue W H, Yi X H, Shang J and Li R W 2019 ACS Nano 13 2634
|
[70] |
Yang Y C, Zhang X X, Qin L, Zeng Q B, Qiu X H and Huang R 2017 Nat. Commun. 8 15173
|
[71] |
Son D, Chae S I, Kim M, Choi M K, Yang J, Park K, Kale V S, Koo J H, Choi C, Lee M, Kim J H, Hyeon T and Kim D H 2016 Adv. Mater. 28 9326
|
[72] |
Zucker R S and Regehr W G 2002 Annu. Rev. Physiol. 64 355
|
[73] |
Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
|
[74] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[75] |
Liu B, Li C X, Yang P P, Hou Z Y and Lin J 2017 Adv. Mater. 29 1605434
|
[76] |
Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J and Mueller T 2020 Nature 579 62
|
[77] |
Diorio C, Hasler P, Minch A and Mead C A 1996 IEEE Trans. Electron Devices 43 1972
|
[78] |
Zhu L Q, Xiao H, Liu Y H, Wan C J, Shi Y and Wan Q 2015 Appl. Phy. Lett. 107 143502
|
[79] |
Wan C J, Zhu L Q, Liu Y H, Feng P, Liu Z P, Cao H L, Xiao P, Shi Y and Wan Q 2016 Adv. Mater. 28 3557
|
[80] |
Kim S G, Kim S H, Park J, Kim G S, Park J H, Saraswat K C, Kim J and Yu H Y 2019 ACS Nano 13 10294
|
[81] |
Wang K, Dai S L, Zhao Y W, Wang Y, Liu C and Huang J 2019 Small 15 1900010
|
[82] |
John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z and Mathews N 2018 Adv. Mater. 30 1800220
|
[83] |
Wang S Y, Chen C S, Yu Z H, He Y L, Chen X Y, Wan Q, Shi Y, Zhang D W, Zhou H, Wang X R and Zhou P 2019 Adv. Mater. 31 1806227
|
[84] |
Eccles J C 1964 The Physiology of Synapses (New York: Academic Press) p. 189215
|
[85] |
Fu Y M, Zhu L Q, Wen J, Xiao H and Liu R 2017 J. Appl. Phys. 121 205301
|
[86] |
Im M, Werginz P and Fried S I 2018 J. Neural. Eng. 15 036010
|
[87] |
Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K and Aono M 2011 Nat. Mater. 10 591
|
[88] |
Lu A, Sun J, Jiang J and Wan Q 2010 Appl. Phys. Lett. 96 043114
|
[89] |
Hong K, Kim S H, Lee K H and Frisbie C D 2013 Adv. Mater. 25 3413
|
[90] |
Zhu L Q, Chao J Y and Xiao H 2014 Appl. Phys. Lett. 105 243508
|
[91] |
Zhu Y X, Liu G X, Xin Z J, Fu C Y, Wan Q and Shan F K 2020 ACS Appl. Mater. Interfaces 12 1061
|
[92] |
Guo Y B, Zhu L Q, Long T Y, Wan D Y and Ren Z Y 2020 J. Mater. Chem. C 8 2780
|
[93] |
Cash S and Yuste R 1999 Neuron 22 383
|
[94] |
Atkinson R C and Shiffrin R M 1968 Psychol. Learn. Motiv. 2 89
|
[95] |
Yu F, Zhu L Q, Gao W T, Fu Y M, Xiao H, Tao J and Zhou J M 2018 ACS Appl. Mater. Interfaces 10 16881
|
[96] |
Tian H, Cao X, Xie Y J, Yan X D, Kostelec A, DiMarzio D, Chang C, Zhao L D, Wu W, Tice J, Cha J J, Guo J and Wang H 2017 ACS Nano 11 7156
|
[97] |
Qian C, Oh S, Choi Y, Kim J H, Sun J, Huang H, Yang J L, Gao Y L, Park J H and Cho J H 2019 Nano Energy 66 104095
|
[98] |
Feldman D E 2012 Neuron 75 556
|
[99] |
Tsukada M, Yamazaki Y and Kojima H 2007 Cogn. Neurodynamics 1 157
|
[100] |
Song S, Miller K D and Abbott L F 2000 Nat. Neurosci. 3 919
|
[101] |
Li Y, Zhong Y P, Xu L, Zhang J J, Xu X H, Sun H J and Miao X S 2013 Sci. Rep. 3 1619
|
[102] |
Li Y, Zhong Y P, Zhang J J, Xu L, Wang Q, Sun H J, Tong H, Cheng X M and Miao X S 2014 Sci. Rep. 4 4906
|
[103] |
Yu F, Zhu L Q, Xiao H, Gao W T and Guo Y B 2018 Adv. Funct. Mater. 28 1804025
|
[104] |
Fanselow M S and Poulos A M 2005 Annu. Rev. Psychol. 56 207
|
[105] |
Tan Z H, Yin X B, Yang R, Mi S B, Jia C L and Guo X 2017 Sci. Rep. 7 713
|
[106] |
John R A, Tiwari N, Chen Y Y, Ankit, Tiwari N, Kulkarni M, Nirmal A, Nguyen A C, Basu A and Mathews N 2018 ACS Nano 12 11263
|
[107] |
Li Y, Xu L, Zhong Y P, Zhou Y X, Zhong S J, Hu Y Z, Chua L O and Miao X S 2015 Adv. Electron. Mater. 1 1500125
|
[108] |
Lee G J, Choi C, Kim D H and Song Y M 2018 Adv. Funct. Mater. 28 1705202
|
[109] |
Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J, Bao Z N and Lee T W 2018 Sci. Adv. 4 eaat7387
|
[110] |
Head S I and Arber M B 2013 Adv. Physiol. Educ. 37 405
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|