Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093601    DOI: 10.1088/1674-1056/ab9613
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations

Hui Wang(王翚)1, Ze-Yu Zhang(张泽宇)1, Xiao-Wu Cai(蔡小五)2, Zi-Han Liu(刘子晗)1, Yong-Xiang Zhang(张永翔)1,3, Zhen-Long Lv(吕珍龙)1, Wei-Wei Ju(琚伟伟)1, Hui-Hui Liu(刘汇慧)1, Tong-Wei Li(李同伟)1, Gang Liu(刘钢)1, Hai-Sheng Li(李海生)1, Hai-Tao Yan(闫海涛)1, Min Feng(冯敏)4
1 Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics Engineering, Henan University of Science and Technology, Luoyang 471023, China;
2 First High School of Luoyang City, Luoyang 471001, China;
3 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
4 School of Physics, Nankai University, Tianjin 300071, China
Abstract  Up to now, at least 806 carbon allotropes have been proposed theoretically. Three interesting carbon allotropes (named Pbam-32, P6/mmm, and I43d) were recently uncovered based on a random sampling strategy combined with space group and graph theory. The calculation results show that they are superhard and remarkably stable compared with previously proposed metastable phases. This indicates that they are likely to be synthesized in experiment. We use the factor group analysis method to analyze their Γ-point vibrational modes. Owing to their large number of atoms in primitive unit cells (32 atoms in Pbam-32, 36 atoms in P6/mmm, and 94 atoms in I43d), they have many Raman- and infrared-active modes. There are 48 Raman-active modes and 37 infrared-active modes in Pbam-32, 24 Raman-active modes and 14 infrared-active modes in P6/mmm, and 34 Raman-active modes and 35 Raman- and infrared-active modes in I43d. Their calculated Raman spectra can be divided into middle frequency range from 600 cm-1 to 1150 cm-1 and high frequency range above 1150 cm-1. Their largest infrared intensities are 0.82, 0.77, and 0.70 (D/Å)2/amu for Pbam, P6/mmm, and I43d, respectively. Our calculated results provide an insight into the lattice vibrational spectra of these sp3 carbon allotropes and suggest that the middle frequency Raman shift and infrared spectrum may play a key role in identifying newly proposed carbon allotropes.
Keywords:  Raman and infrared spectra      carbon allotrope      first-principles calculation  
Received:  31 March 2020      Revised:  20 May 2020      Accepted manuscript online:  25 May 2020
PACS:  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
  81.05.U- (Carbon/carbon-based materials)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1404111, 11504089, 61874160, 61675064, and 11404098), the Fund for Young Key Teacher of Henan Province, China (Grant No. 2016GGJS-059), and the Henan Provincial Major Scientific and Technological Projects, China (Grant No. 182102210289).
Corresponding Authors:  Hui Wang, Min Feng     E-mail:  nkxirainbow@gmail.com;nkfm@nankai.edu.cn

Cite this article: 

Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏) Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations 2020 Chin. Phys. B 29 093601

[1] Hoffmann R, Kabanov A A, Golov A A and Proserpio D M 2016 Angewandte Chemie International Edition 55 10962
[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T and Kaxiras E 2018 Nature 556 80
[3] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[4] Takagi M, Taketsugu T, Kino H, Tateyama Y, Terakura K and Maeda S 2017 Phys. Rev. B 95 184110
[5] Shi X, He C, Pickard CJ, Tang C and Zhong J 2018 Phys. Rev. B 97 014104
[6] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[7] He C, Shi X, Clark S J, Li J, Pickard C J, Ouyang T, Zhang C, Tang C and Zhong J 2018 Phys. Rev. Lett. 121 175701
[8] He C, Zhang C, Xiao H, Meng L and Zhong J 2017 Carbon 112 91
[9] Ribeiro F J, Tangney P, Louie S G and Cohen M L 2006 Phys. Rev. B 74 172101
[10] Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K and Zou G 2009 Phys. Rev. Lett. 102 175506
[11] He C, Sun L, Zhang C, Peng X, Zhang K and Zhong J 2012 Solid State Commun. 152 1560
[12] Li D, Bao K, Tian F, Zeng Z, He Z, Liu B and Cui T 2012 Phys. Chem. Chem. Phys. 14 4347
[13] Sheng X L, Yan Q B, Ye F, Zheng Q R and Su G 2011 Phys. Rev. Lett. 106 155703
[14] Zhang J, Wang R, Zhu X, Pan A, Han C, Li X, Zhao D, Ma C, Wang W and Su H 2017 Nat. Commun. 8 683
[15] Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B and Liu B 2017 Phys. Rev. Lett. 118 245701
[16] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhés S, Willand A, Caliste D, Botti S, San Miguel A, Goedecker S and Marques M A L 2012 Phys. Rev. Lett. 108 065501
[17] Mao W L, Mao H K, Eng P J, Trainor T P, Newville M, Kao C C, Heinz D L, Shu J, Meng Y and Hemley R J 2003 Science 302 425
[18] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[19] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund PC 2006 Nano Lett 6 2667
[20] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294
[21] Lui C H and Heinz T F 2013 Phys. Rev. B 87 121404
[22] Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K and Roth S 2006 Phys. Rev. Lett. 97 187401
[23] Bai Y, Zhao X, Li T, Lv Z, Lv S, Han H, Yin Y and Wang H 2014 Carbon 78 70
[24] Wang H, Wang Y, Cao X, Feng M and Lan G 2009 J. Raman Spectros. 40 1791
[25] Wang H, You J, Wang L, Feng M and Wang Y 2010 J. Raman Spectros. 41 125
[26] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund P 2006 Nano Lett. 6 2667
[27] Wang H, Feng M, Zhang X, Tan P H and Wang Y 2015 J. Phys. Chem. C 119 6906
[28] Kürti J, Kresse G and Kuzmany H 1998 Phys. Rev. B 58 R8869
[29] Wang H, Cao X, Feng M, Wang Y, Jin Q, Ding D and Lan G 2009 Spectrochim Acta A Mol. Biomol. Spectrosc. 71 1932
[30] Tsareva S Y, Devaux X, McRae E, Aranda L, Gregoire B, Carteret C, Dossot M, Lamouroux E, Fort Y, Humbert B and Mevellec J Y 2014 Carbon 67 753
[31] Nemanich R J, Lucovsky G and Solin S A 1997 Solid State Commun. 23 117
[32] Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Nat. Phys. 4 532
[33] Anastassakis E and Burstein E 1970 Phys. Rev. B 2 1952
[34] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P and Wentzcovitch RM 2009 J. Phys.: Condens. Matter 21 395502
[35] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[36] Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys. 73 515
[37] Feng X K, Shi S, Shen J Y, Shang S L, Yao M Y and Liu Z K 2016 J. Nucl. Mater. 479 461
[38] Shi S, Ke X, Ouyang C, Zhang H, Ding H, Tang Y, Zhou W, Li P, Lei M and Tang W 2009 J. Power Sources 194 830
[39] Shang S L, Hector J L G, Shi S, Qi Y, Wang Y and Liu Z K 2012 Acta Materialia 60 5204
[40] Shi S, Zhang H, Ke X, Ouyang C, Lei M and Chen L 2009 Phys. Lett. A 373 4096
[41] Wang H, Liu H, Zhang Z, Liu Z, Lv Z, Li T, Ju W, Li H, Cai X and Han H 2019 NPJ Comput. Mater. 5 1
[42] Wang H, Kong L, Zhao X, Lv Z, Li T, Ju W W, You J and Bai Y 2013 Appl. Phys. Lett. 103 101902
[43] Zhang G Y, Lan G X and Wang Y F 1991 Lattice Vibration Spectroscopy, 2nd edn. (High Education Press) p. 79 (in Chinese)
[44] Porezag D and Pederson M 1996 Phys. Rev. B 54 7830
[45] Favors R N, Jiang Y, Loethen Y L and Ben-Amotz D 2005 Rev. Sci. Instrum. 76 033108
[46] Lü Z L, You J H, Zhao Y Y and Wang H 2011 Commun. Theor. Phys. 55 513
[47] Momma K and Izumi F 2011 J. Appl. Crystallography 44 1272
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!