Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066103    DOI: 10.1088/1674-1056/ab8458
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculations of solute-vacancy interactions in aluminum

Sha-Sha Zhang(张莎莎)1, Zheng-Jun Yao(姚正军)1, Xiang-Shan Kong(孔祥山)2, Liang Chen(陈良)2, Jing-Yu Qin(秦敬玉)2
1 College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  The interactions of solute atoms with vacancies play a key role in diffusion and precipitation of alloying elements, ultimately influencing the mechanical properties of aluminum alloys. In this study, first-principles calculations are systematically performed to quantify the solute-vacancy interactions for the 3d-4p series and the 4d-5p series. The solute-vacancy interaction gradually transforms from repulsion to attraction from left to right. The solute-vacancy binding energy is sensitive to the supercell size for elements at the beginning. These behaviors of the solute-vacancy binding energy can be understood in terms of the combination and competition between the elastic and electronic interactions. Overall, the electronic binding energy follows a similar trend to the total binding energy and plays a major role in the solute-vacancy interactions.
Keywords:  first-principles calculations      solute-vacancy binding      aluminum alloys  
Received:  03 March 2020      Revised:  25 March 2020      Accepted manuscript online: 
PACS:  61.72.jd (Vacancies)  
  81.05.Bx (Metals, semimetals, and alloys)  
  63.20.dk (First-principles theory)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51701095 and 51771185) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170798).
Corresponding Authors:  Sha-Sha Zhang, Xiang-Shan Kong     E-mail:  s.zhang@nuaa.edu.cn;xskong@sdu.edu.cn

Cite this article: 

Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉) First-principles calculations of solute-vacancy interactions in aluminum 2020 Chin. Phys. B 29 066103

[1] Gayle F M and Goodway M 1994 Science 266 1015
[2] Ohta M, Hashimoto F and Tanimoto T 1968 Memoirs of the School of Engineering (Okayama: Okayama University) pp. 39-50
[3] Ohta M and Hashimoto F 1965 Trans. Jpn. Inst. Met. 6 9
[4] Raman K, Das E and Vasu K 1971 J. Mater. Sci. 6 1367
[5] Melikhova O, Kuriplach J, Čížek J and Procházka I 2006 Appl. Surf. Sci. 252 3285
[6] Balluffi R W and Ho P S 1973 Diffusion (Metal Park, OH: American Society for Metals) p. 83
[7] Wolverton C 2007 Acta Mater. 55 5867
[8] Simonovic D and Sluiter M H 2009 Phys. Rev. B 79 054304
[9] Hoshino T, Zeller R and Dederichs P 1996 Phys. Rev. B 53 8971
[10] Ohnuma T, Soneda N and Iwasawa M 2009 Acta Mater. 57 5947
[11] You Y W, Kong X S, Wu X B, Liu W, Liu C S, Fang Q, Chen J, Luo G N and Wang Z 2014 J. Nucl. Mater. 455 68
[12] Kong X S, Wu X B, You Y W, Liu C S, Fang Q, Chen J L, Luo G N and Wang Z 2014 Acta Mater. 66 172
[13] Shin D and Wolverton C 2010 Acta Mater. 58 531
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[16] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[17] Blöchl P E 1994 Phys. Rev. B 50 17953
[18] Kresse G and Joubert D 1999 Phys. L Rev. B 59 1758
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Eisenmann B and Schäfer H 1988 Structure Data of Elements and Intermetallic Phases (Berlin: Springer-Verlag)
[21] Every A and McCurdy A 1992 Low Frequency Properties of Dielectric Crystals (Berlin: Springer-Verlag)
[22] Bass J 1967 Philos. Mag. 15 717
[23] Kurth S, Perdew J P and Blaha P 1999 Int. J. Quantum Chem. 75 889
[24] Stampfl C and Van de Walle C 1999 Phys. Rev. B 59 5521
[25] Carling K, Wahnström G, Mattsson T R, Mattsson A E, Sandberg N and Grimvall G 2000 Phys. Rev. Lett. 85 3862
[26] Olsson P, Klaver T and Domain C 2010 Phys. Rev. B 81 054102
[27] Li Y J, Kulkova S E, Hu Q M, Bazhanov D I, Xu D S, Hao Y L and Yang R 2007 Phys. Rev. B 76 064110
[28] Lin K and Zhao Y P 2019 Extreme Mech. Lett. 30 100501
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[11] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[12] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[13] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
No Suggested Reading articles found!