CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions |
Wei Wang(王威)1, Wen Lei(雷文)1, Xiaojun Zheng(郑晓军)1, Huan Li(黎欢)1, Xin Tang(唐鑫)2, Xing Ming(明星)1 |
1 College of Science, Guilin University of Technology, Guilin 541004, China; 2 Key Laboratory of New Processing Technology for Nonferrous Metal&Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China |
|
|
Abstract Based on first-principles simulations, we revisit the crystal structures, electronic structures, and structural stability of the layered transition metal dichalcogenides (TMDCs) NbS2, and shed more light on the crucial roles of the van der Waals (vdW) interactions. Theoretically calculated results imply that the vdW corrections are important to reproduce the layered crystal structure, which is significant to correctly describe the electronic structure of NbS2. More interestingly, under hydrostatic pressure or tensile strain in ab plane, an isostructural phase transition from two-dimensional layered structure to three-dimensional bulk in the I4/mmm phase has been uncovered. The abnormal structural transition is closely related to the electronic structure instability and interlayer bonding effects. The interlayer Nb-S distances collapse and the interlayer vdW interactions disappear, concomitant with new covalent bond emerging and increasing coordination number. Present work highlights the significance of the vdW interactions, and provides new insights on the unconventional structural transitions in NbS2, which will attract wide audience working in the hectic field of TMDCs.
|
Received: 06 February 2020
Revised: 13 March 2020
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864008) and Guangxi Natural Science Foundation, China (Grant Nos. 2018GXNSFAA138185 and 2018AD19200). High performance computational resources provided by LvLiang Cloud Computing Center of China and National Supercomputer Center on TianHe-2 are gratefully acknowledged. |
Corresponding Authors:
Xing Ming
E-mail: mingxing@glut.edu.cn
|
Cite this article:
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星) Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions 2020 Chin. Phys. B 29 056201
|
[1] |
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
|
[2] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[3] |
Ma X, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803
|
[4] |
Liu T, Tong L, Huang X and Ye L 2019 Chin. Phys. B 28 017302
|
[5] |
Guan Z, Ni S and Hu S 2018 J. Phys. Chem. C 122 6209
|
[6] |
Shu H, Wang Y and Sun M 2019 Phys. Chem. Chem. Phys. 21 15760
|
[7] |
Cui Z, Ren K, Zhao Y, Wang X, Shu H, Yu J and Sun M 2019 Appl. Surf. Sci. 492 513
|
[8] |
Guan Z, Lian C S, Hu S, Ni S, Li J and Duan W 2017 J. Phys. Chem. C 121 3654
|
[9] |
Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
|
[10] |
Wilson J A, Di Salvo F J and Mahajan S 1974 Phys. Rev. Lett. 32 882
|
[11] |
Neto and A H Castro 2001 Phys. Rev. Lett. 86 4382
|
[12] |
Leroux M, Le Tacon M, Calandra M, Cario L, Measson M A, Diener P and Rodiere P 2012 Phys. Rev. B 86 155125
|
[13] |
Heil C, PoncéS, Lambert H, Schlipf M, Margine E R and Giustino F 2017 Phys. Rev. Lett. 119 087003
|
[14] |
Dash J K, Chen L, Dinolfo P H, Lu T M and Wang G C 2015 J. Phys. Chem. C 119 19763
|
[15] |
Zhao S, Hotta T, Koretsune T, Watanabe K, Taniguchi T, Sugawara K and Kitaura R 2016 2D Mater. 3 025027
|
[16] |
Wang X, Lin J, Zhu Y, Luo C, Suenaga K, Cai C and Xie L 2017 Nanoscale 9 16607
|
[17] |
Kozhakhmetov A, Choudhury T H, Al Balushi Z Y, Chubarov M and Redwing J M 2018 J. Cryst. Growth 486 137
|
[18] |
Leroux M, Cario L, Bosak A and Rodiere P 2018 Phys. Rev. B 97 195140
|
[19] |
Bianco R, Errea I, Monacelli L, Calandra M and Mauri F 2019 Nano Lett. 19 3098
|
[20] |
Güller F, Vildosola V L and Llois A M 2016 Phys. Rev. B 93 094434
|
[21] |
Tresca C and Calandra M 2019 2D Mater. 6 035041
|
[22] |
Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B and Narayana C 2018 Phys. Rev. B 97 085107
|
[23] |
Naumov P G, ElGhazali M A, Mirhosseini H, Süß V, Morosan E, Felser C and Medvedev S A 2018 J. Phys.-Condes. Matter 30 035401
|
[24] |
Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
|
[25] |
Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T and Lin J F 2014 Nat. Commun. 5 1
|
[26] |
Lei W, Cai B, Zhou H, Heymann G, Tan X, Zhang S and Ming X 2019 Nanoscale 11 12317
|
[27] |
Carmalt C J, Manning T D, Parkin I P, Peters E S and Hector A L 2004 J. Mater. Chem. 14 290
|
[28] |
Jellinek F, Brauer G and Müller H 1960 Nature 185 376
|
[29] |
Ge W, Kawahara K, Tsuji M and Ago H 2013 Nanoscale 5 5773
|
[30] |
Morosin B 1974 Acta. Crystallogr. B 30 551
|
[31] |
Fisher W G and Sienko M J 1980 Inorg. Chem. 19 39
|
[32] |
Ehm L, Knorr K and Depmeier W 2002 Z. Krist-Cryst. Mater. 217 522
|
[33] |
Jones Jr R E, Shanks H R, Finnemore D K and Morosin B 1972 Phys. Rev. B 6 835
|
[34] |
Tissen V G, Osorio M R, Brison J P, Nemes N M, García-Hernández M, Cario L and Suderow H 2013 Phys. Rev. B 87 134502
|
[35] |
Xu Y, Liu X and Guo W 2014 Nanoscale 6 12929
|
[36] |
Zhou Y, Wang Z, Yang P, Zu X, Yang L, Sun X and Gao F 2012 ACS Nano 6 9727
|
[37] |
Liu Z L, Cai L C and Zhang X L 2014 J. Alloy. Compd. 610 472
|
[38] |
Gjerding M, Pandey M and Thygesen K 2017 Nat. Commun. 8 15133
|
[39] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[40] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[41] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[42] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[43] |
Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.-Condens. Matter 22 022201
|
[44] |
Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
|
[45] |
Heil C, Schlipf M and Giustino F 2018 Phys. Rev. B 98 075120
|
[46] |
Sirica N, Mo S K, Bondino F, Pis I, Nappini S, Vilmercati P and Vobornik I 2016 Phys. Rev. B 94 075141
|
[47] |
Machida T, Kohsaka Y, Iwaya K, Arita R, Hanaguri T, Suzuki R and Iwasa Y 2017 Phys. Rev. B 96 075206
|
[48] |
Gjerding M N, Pandey M and Thygesen K S 2017 Nat. Commun. 8 15133
|
[49] |
Xiao S L, Yu W Z and Gao S P 2016 Surf. Sci. 653 107
|
[50] |
Birch F 1947 Phys. Rev. 71 809
|
[51] |
Lei W, Zhang S, Heymann G, Tang X, Wen J, Zheng X and Ming X 2019 J. Mater. Chem. C 7 2096
|
[52] |
Zhang S, He J, Zhao Z, Yu D and Tian Y 2019 Chin. Phys. B 28 106104
|
[53] |
Wan B, Zhang J, Wu L and Gou H 2019 Chin. Phys. B 28 106201
|
[54] |
Zhu T and Gao S P 2014 J. Phys. Chem. C 118 11385
|
[55] |
Chen X, Gu Y, Tao G, Pei Y, Wang G and Cui N 2015 J. Mater. Chem. A 3 18898
|
[56] |
Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F and Bauer E D 2016 Phys. Rev. B 93 144404
|
[57] |
Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. Int. Edit 36 1808
|
[58] |
Batsanov S 2001 Inorg. Mater. 37 871
|
[59] |
Cordero B, Gómez V, Platero-Prats A E, Revés M, Echeverría J, Cremades E and Alvarez S 2008 Dalton Trans. 21 2832
|
[60] |
Sun A, Gao S P and Gu G 2019 Phys. Rev. Mater. 3 104604
|
[61] |
Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q and Zou G 2011 Phys. Rev. Lett. 106 145501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|