Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056201    DOI: 10.1088/1674-1056/ab8214
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions

Wei Wang(王威)1, Wen Lei(雷文)1, Xiaojun Zheng(郑晓军)1, Huan Li(黎欢)1, Xin Tang(唐鑫)2, Xing Ming(明星)1
1 College of Science, Guilin University of Technology, Guilin 541004, China;
2 Key Laboratory of New Processing Technology for Nonferrous Metal&Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
Abstract  Based on first-principles simulations, we revisit the crystal structures, electronic structures, and structural stability of the layered transition metal dichalcogenides (TMDCs) NbS2, and shed more light on the crucial roles of the van der Waals (vdW) interactions. Theoretically calculated results imply that the vdW corrections are important to reproduce the layered crystal structure, which is significant to correctly describe the electronic structure of NbS2. More interestingly, under hydrostatic pressure or tensile strain in ab plane, an isostructural phase transition from two-dimensional layered structure to three-dimensional bulk in the I4/mmm phase has been uncovered. The abnormal structural transition is closely related to the electronic structure instability and interlayer bonding effects. The interlayer Nb-S distances collapse and the interlayer vdW interactions disappear, concomitant with new covalent bond emerging and increasing coordination number. Present work highlights the significance of the vdW interactions, and provides new insights on the unconventional structural transitions in NbS2, which will attract wide audience working in the hectic field of TMDCs.
Keywords:  NbS2      high pressure      phase transition      van der Waals (vdW) interactions  
Received:  06 February 2020      Revised:  13 March 2020      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864008) and Guangxi Natural Science Foundation, China (Grant Nos. 2018GXNSFAA138185 and 2018AD19200). High performance computational resources provided by LvLiang Cloud Computing Center of China and National Supercomputer Center on TianHe-2 are gratefully acknowledged.
Corresponding Authors:  Xing Ming     E-mail:  mingxing@glut.edu.cn

Cite this article: 

Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星) Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions 2020 Chin. Phys. B 29 056201

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[3] Ma X, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803
[4] Liu T, Tong L, Huang X and Ye L 2019 Chin. Phys. B 28 017302
[5] Guan Z, Ni S and Hu S 2018 J. Phys. Chem. C 122 6209
[6] Shu H, Wang Y and Sun M 2019 Phys. Chem. Chem. Phys. 21 15760
[7] Cui Z, Ren K, Zhao Y, Wang X, Shu H, Yu J and Sun M 2019 Appl. Surf. Sci. 492 513
[8] Guan Z, Lian C S, Hu S, Ni S, Li J and Duan W 2017 J. Phys. Chem. C 121 3654
[9] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[10] Wilson J A, Di Salvo F J and Mahajan S 1974 Phys. Rev. Lett. 32 882
[11] Neto and A H Castro 2001 Phys. Rev. Lett. 86 4382
[12] Leroux M, Le Tacon M, Calandra M, Cario L, Measson M A, Diener P and Rodiere P 2012 Phys. Rev. B 86 155125
[13] Heil C, PoncéS, Lambert H, Schlipf M, Margine E R and Giustino F 2017 Phys. Rev. Lett. 119 087003
[14] Dash J K, Chen L, Dinolfo P H, Lu T M and Wang G C 2015 J. Phys. Chem. C 119 19763
[15] Zhao S, Hotta T, Koretsune T, Watanabe K, Taniguchi T, Sugawara K and Kitaura R 2016 2D Mater. 3 025027
[16] Wang X, Lin J, Zhu Y, Luo C, Suenaga K, Cai C and Xie L 2017 Nanoscale 9 16607
[17] Kozhakhmetov A, Choudhury T H, Al Balushi Z Y, Chubarov M and Redwing J M 2018 J. Cryst. Growth 486 137
[18] Leroux M, Cario L, Bosak A and Rodiere P 2018 Phys. Rev. B 97 195140
[19] Bianco R, Errea I, Monacelli L, Calandra M and Mauri F 2019 Nano Lett. 19 3098
[20] Güller F, Vildosola V L and Llois A M 2016 Phys. Rev. B 93 094434
[21] Tresca C and Calandra M 2019 2D Mater. 6 035041
[22] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B and Narayana C 2018 Phys. Rev. B 97 085107
[23] Naumov P G, ElGhazali M A, Mirhosseini H, Süß V, Morosan E, Felser C and Medvedev S A 2018 J. Phys.-Condes. Matter 30 035401
[24] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[25] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T and Lin J F 2014 Nat. Commun. 5 1
[26] Lei W, Cai B, Zhou H, Heymann G, Tan X, Zhang S and Ming X 2019 Nanoscale 11 12317
[27] Carmalt C J, Manning T D, Parkin I P, Peters E S and Hector A L 2004 J. Mater. Chem. 14 290
[28] Jellinek F, Brauer G and Müller H 1960 Nature 185 376
[29] Ge W, Kawahara K, Tsuji M and Ago H 2013 Nanoscale 5 5773
[30] Morosin B 1974 Acta. Crystallogr. B 30 551
[31] Fisher W G and Sienko M J 1980 Inorg. Chem. 19 39
[32] Ehm L, Knorr K and Depmeier W 2002 Z. Krist-Cryst. Mater. 217 522
[33] Jones Jr R E, Shanks H R, Finnemore D K and Morosin B 1972 Phys. Rev. B 6 835
[34] Tissen V G, Osorio M R, Brison J P, Nemes N M, García-Hernández M, Cario L and Suderow H 2013 Phys. Rev. B 87 134502
[35] Xu Y, Liu X and Guo W 2014 Nanoscale 6 12929
[36] Zhou Y, Wang Z, Yang P, Zu X, Yang L, Sun X and Gao F 2012 ACS Nano 6 9727
[37] Liu Z L, Cai L C and Zhang X L 2014 J. Alloy. Compd. 610 472
[38] Gjerding M, Pandey M and Thygesen K 2017 Nat. Commun. 8 15133
[39] Blöchl P E 1994 Phys. Rev. B 50 17953
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.-Condens. Matter 22 022201
[44] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
[45] Heil C, Schlipf M and Giustino F 2018 Phys. Rev. B 98 075120
[46] Sirica N, Mo S K, Bondino F, Pis I, Nappini S, Vilmercati P and Vobornik I 2016 Phys. Rev. B 94 075141
[47] Machida T, Kohsaka Y, Iwaya K, Arita R, Hanaguri T, Suzuki R and Iwasa Y 2017 Phys. Rev. B 96 075206
[48] Gjerding M N, Pandey M and Thygesen K S 2017 Nat. Commun. 8 15133
[49] Xiao S L, Yu W Z and Gao S P 2016 Surf. Sci. 653 107
[50] Birch F 1947 Phys. Rev. 71 809
[51] Lei W, Zhang S, Heymann G, Tang X, Wen J, Zheng X and Ming X 2019 J. Mater. Chem. C 7 2096
[52] Zhang S, He J, Zhao Z, Yu D and Tian Y 2019 Chin. Phys. B 28 106104
[53] Wan B, Zhang J, Wu L and Gou H 2019 Chin. Phys. B 28 106201
[54] Zhu T and Gao S P 2014 J. Phys. Chem. C 118 11385
[55] Chen X, Gu Y, Tao G, Pei Y, Wang G and Cui N 2015 J. Mater. Chem. A 3 18898
[56] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F and Bauer E D 2016 Phys. Rev. B 93 144404
[57] Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. Int. Edit 36 1808
[58] Batsanov S 2001 Inorg. Mater. 37 871
[59] Cordero B, Gómez V, Platero-Prats A E, Revés M, Echeverría J, Cremades E and Alvarez S 2008 Dalton Trans. 21 2832
[60] Sun A, Gao S P and Gu G 2019 Phys. Rev. Mater. 3 104604
[61] Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q and Zou G 2011 Phys. Rev. Lett. 106 145501
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!