CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Bose-Einstein condensates in an eightfold symmetric optical lattice |
Zhen-Xia Niu(牛真霞)1, Yong-Hang Tai(邰永航)2, Jun-Sheng Shi(石俊生)2, Wei Zhang(张威)1,3 |
1 Department of Physics, Renmin University of China, Beijing 100872, China; 2 Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China; 3 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract We investigate the properties of Bose-Einstein condensates (BECs) in a two-dimensional quasi-periodic optical lattice (OL) with eightfold rotational symmetry by numerically solving the Gross-Pitaevskii equation. In a stationary external harmonic trapping potential, we first analyze the evolution of matter-wave interference pattern from periodic to quasi-periodic as the OL is changed continuously from four-fold periodic to eight-fold quasi-periodic. We also investigate the transport properties during this evolution for different interatomic interaction and lattice depth, and find that the BEC crosses over from ballistic diffusion to localization. Finally, we focus on the case of eightfold symmetric lattice and consider a global rotation imposed by the external trapping potential. The BEC shows vortex pattern with eightfold symmetry for slow rotation, becomes unstable for intermediate rotation, and exhibits annular solitons with approximate axial symmetry for fast rotation. These results can be readily demonstrated in experiments using the same configuration as in Phys. Rev. Lett. 122 110404 (2019).
|
Received: 04 February 2020
Revised: 02 March 2020
Accepted manuscript online:
|
PACS:
|
61.44.Br
|
(Quasicrystals)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434011, 11522436, and 11774425), the National Key R&D Program of China (Grants No. 2018YFA0306501), the Beijing Natural Science Foundation, China (Grant No. Z180013), and the Research Funds of Renmin University of China (Grants Nos. 16XNLQ03 and 18XNLQ15). |
Corresponding Authors:
Wei Zhang
E-mail: wzhangl@ruc.edu.cn
|
Cite this article:
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威) Bose-Einstein condensates in an eightfold symmetric optical lattice 2020 Chin. Phys. B 29 056103
|
[1] |
Hiramoto H and Kohmoto M 1989 Phys. Rev. Lett. 62 2714
|
[2] |
Kraus Y E, Ringel Z and Zilberberg O 2013 Phys. Rev. Lett. 111 226401
|
[3] |
Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W and Ahn J R 2018 Science 361 782
|
[4] |
Wang J K, Zhang W and Sáde Melo C A R 2016 Chin. Phys. B 25 087401
|
[5] |
Bindi L, Steinhardt P J, Yao N and Lu P J 2009 Science 324 1306
|
[6] |
Steurer W 2009 Z. Kristallogr. Cryst. Mater. 219 391
|
[7] |
Gong P, Hu C Z, Zhou X, Wang A J and Miao L 2006 Chin. Phys. 15 2065
|
[8] |
Bloch I 2005 Nat. Phys. 1 23
|
[9] |
Greiner M and Fölling S 2008 Nature 453 736
|
[10] |
Oosten D V, Straten P V and Stoof H T C 2001 Phys. Rev. A 63 053601
|
[11] |
Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U and Bloch I 2015 Science 349 842
|
[12] |
Zheng W and Cooper N R 2018 Phys. Rev. A 97 021601(R)
|
[13] |
Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Hébert C D, Bergeron S, Tremblay A M S, Kokalj J, Huse D A, Schauß P and Bakr W S 2019 Science 363 379
|
[14] |
Guidoni L, TrichéC, Verkerk P and Grynberg G 1997 Phys. Rev. Lett. 79 3363
|
[15] |
Sanchez-Palencia L and Santos L 2005 Phys. Rev. A 72 053607
|
[16] |
Jagannathan A and Duneau M 2013 Euro. Phys. Lett. 104 66003
|
[17] |
Lin C, Steinhardt P J and Torquato S 2018 Phys. Rev. Lett. 120 247401
|
[18] |
Viebahn K, Sbroscia M, Carter E, Yu J C and Schneider U 2019 Phys. Rev. Lett. 122 110404
|
[19] |
Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
|
[20] |
Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 82 023612
|
[21] |
Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
|
[22] |
Wang D S, Shi Y R, Feng W X and Wen L 2017 Physica D 351 30
|
[23] |
Wouters M, Tempere J and Devreese J T 2003 Phys. Rev. A 68 053603
|
[24] |
Haller E, Mark M J, Hart R, Danzl J G, Reichsollner L, Melezhik V, Schmelcher P and Nägerl H C 2010 Phys. Rev. Lett. 104 153203
|
[25] |
Zhang W and Zhang P 2011 Phys. Rev. A 83 053615
|
[26] |
Wang J K, Yi W and Zhang W 2016 Front. Phys. 11 118102
|
[27] |
Petrov D S and Shlyapnikov G V 2001 Phys. Rev. A 64 012706
|
[28] |
Olshanii M, Perrin H and Lorent V 2010 Phys. Rev. Lett. 105 095302
|
[29] |
Hu H, Mulkerin B C, Toniolo U, He L Y and Liu X J 2019 Phys. Rev. Lett. 122 070401
|
[30] |
Bao W Z and Du Q 2004 SIAM J. Sci. Comput. 25 1674
|
[31] |
Yuan H Q and Zhong J X 1998 Acta. Phys. Sin. 7 196 (in Chinese)
|
[32] |
Billy J, Josse V, Zuo Z C, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L and Bouye P 2008 Nature 453 891
|
[33] |
Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547
|
[34] |
Fujiwara C J, Singh K, Geiger Z A, Senaratne R, Rajagopal S V, Lipatov M and Weld D M 2019 Phys. Rev. Lett. 122 010402
|
[35] |
Ben D M, Peik E, Reichel J, Castin Y and Salomon C 1996 Phys. Rev. Lett. 76 4508
|
[36] |
Wilkinson S R, Bharucha C F, Madison K W, Niu Q and Raizen M G 1996 Phys. Rev. Lett. 76 4512
|
[37] |
Anderson B P and Kasevich M A 1998 Science 282 1686
|
[38] |
Roati G, Mirandes E D, Ferlaino F, Ott H, Modugno G and Inguscio M 2004 Phys. Rev. Lett. 92 230402
|
[39] |
Diez E, Dominguez-Adame F, Macia E and Sanchez A 1996 Phys. Rev. B 54 16792
|
[40] |
Kasamatsu K and Tsubota M 2006 Phys. Rev. Lett. 97 240404
|
[41] |
Liu C F and Liu W M 2012 Phys. Rev. A 86 033602
|
[42] |
Tung S, Schweikhard V and Cornell E A 2006 Phys. Rev. Lett. 97 240402
|
[43] |
Bhat R, Krämer M, Cooper J and Holland M J 2007 Phys. Rev. A 76 043601
|
[44] |
Antoine X and Duboscq R 2014 Comput. Phys. Commu. 185 2969
|
[45] |
Sakaguchi H and Malomed B A 2006 Phys. Rev. E 74 026601
|
[46] |
Sakaguchi H and Malomed B A 2009 Phys. Rev. A 79 043606
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|