Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046801    DOI: 10.1088/1674-1056/ab790b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy

Yi Wang(王一)1,2, Xiang Guo(郭祥)1,2,3, Jiemin Wei(魏节敏)2, Chen Yang(杨晨)1,3,4, Zijiang Luo(罗子江)1,4, Jihong Wang(王继红)1, Zhao Ding(丁召)1,2,3
1 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
2 Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, China;
3 Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, China;
4 School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
Abstract  GaAs multiple concentric nano-ring structures (CNRs) are prepared with multistep crystallization procedures by droplets epitaxy on GaAs (001) to explore the influence of different initial crystallization temperatures on CNRs morphology. Atomic force microscope (AFM) images show that GaAs nanostructures are more likely to form elliptical rings due to diffusion anisotropy. Meanwhile, with the increase of initial crystallization temperature, the inner ring height and density of CNRs are increased, and outer rings are harder to form. In addition, the mechanism of formation of CNRs is discussed by classical nucleation theory and diffusion theory. The method can be used to calculate the diffusion activation energy of gallium atoms (0.7±0.1 eV) on the GaAs (001) surface conveniently.
Keywords:  concentric nano-ring structures      crystallization temperature      activation energy of diffusion  
Received:  17 January 2020      Revised:  18 February 2020      Accepted manuscript online: 
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  61.46.-w (Structure of nanoscale materials)  
  65.40.gp (Surface energy)  
  81.10.Pq (Growth in vacuum)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564002 and 11664005), the Science and Technology Foundation of Guizhou Province, China (Grant No. QKH-[2017]1055), and Guizhou University Talent Foundation (Grant No. GDJHZ-[2015]23).
Corresponding Authors:  Zhao Ding     E-mail:  zding@gzu.edu.cn

Cite this article: 

Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召) Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy 2020 Chin. Phys. B 29 046801

[1] Barseghyan M G, Manaselyan A K, Larozec D and Kirakosyan A A 2016 Physica E 81 31
[2] Zhao Z Y, Min Y and Huang Y Y 2019 Physica E 114 113589
[3] Li H D, Wang Y, Liu S H, Kang X B, Ding J and Hao H S 2018 J. Appl. Phys. 124 085103
[4] Zhao X, Zheng J, Yuan R Y and Guo Y 2019 Curr. Appl. Phys. 19 447
[5] Somaschini C, Bietti S, Koguchi N and Sanguinetti S 2009 Nano Lett. 9 3419
[6] Dias da Silva L G G V M, Villas-Boas J and Ulloa S E 2007 Phys. Rev. B 76 155306
[7] Yi G Y, Wang X Q, Gong W J, Wu H N and Chen X H 2016 Phys. Lett. A 380 1385
[8] Barseghyan M G, Kirakosyan A A and Laroze D 2017 Opt. Commun. 383 571
[9] Spirina A A and Shwartz N L 2019 Mat. Sci. Semicon. Proc. 100 319
[10] Boonpeng P, Jevasuwan W, Nuntawong N, Thainoi S, Panyakeow S and Ratanathammaphan S 2011 J. Cryst. Growth 323 271
[11] Mano T, Kuroda T, Sanguinetti S, Ochiai T, Tateno T, KimJ, Noda T, Kawabe M, Sakoda K, Kido G and Koguchi N 2005 Nano Lett. 5 425
[12] Somaschini C, Bietti S, Sanguinetti S, Koguchi N and Fedorov A 2010 Nanotechnology 21 125601
[13] Somaschini C, Bietti S, Fedorov A, Koguchi N and Sanguinetti S 2010 Nanoscale Res. Lett. 5 1865
[14] Venables J A, Persaud R, Metcalfe F L, Milne R H and Azim M 1994 J. Phys. Chem. Solids 55 955
[15] Venables J A 1987 Phys. Rev. B 36 4153
[16] Venables J A, Spiller G D T and Hanbucken M 1984 Rep. Prog. Phys. 47 399
[17] Li Z H, Ding Z, Tang J W, Wang Y, Luo Z J, Ma M M, Huang Y B, Zhang Z D and Guo X 2010 J. Phys. Chem. C 114 15343
[18] Li X L 2010 J. Phys. Chem. C 114 15343
[19] Li X L 2013 J. Cryst. Growth 377 59
[20] Neave J H, Dobson P J, Joyce B A and Zhang J 1985 Appl. Phys. Lett. 47 100
[21] Koshiba S, Nakamura Y, Tsuchiya M, Noge H, Kano H, Nagamune Y, Noda T and Sakaki H 1994 J. Appl. Phys. 76 4138
[22] Labella V P, Bullock D W, Ding Z, Emery C, Harter W G and Thibado P M 2000 J. Vac. Sci. Technol. A 18 1526
[23] Deluca P M, Lananda J G C and Barnett S A 1999 Appl. Phys. Lett. 74 1719
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[3] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[4] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[5] Laser-modified luminescence for optical data storage
Xin Wei(魏鑫), Weiwei Zhao(赵伟玮), Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇), and Zhenhua Ni(倪振华). Chin. Phys. B, 2022, 31(11): 117901.
[6] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[7] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[13] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
No Suggested Reading articles found!