Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046601    DOI: 10.1088/1674-1056/ab7743
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulation of thermal conductivity of silicone rubber

Wenxue Xu(徐文雪)1, Yanyan Wu(吴雁艳)2, Yuan Zhu(祝渊)2, Xin-Gang Liang(梁新刚)1
1 School of Aerospace Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China;
2 College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Silicone rubber is widely used as a kind of thermal interface material (TIM) in electronic devices. However few studies have been carried out on the thermal conductivity mechanism of silicone rubber. This paper investigates the thermal conductivity mechanism by non-equilibrium molecular dynamics (NEMD) in three aspects: chain length, morphology, and temperature. It is found that the effect of chain length on thermal conductivity varies with morphologies. In crystalline state where the chains are aligned, the thermal conductivity increases apparently with the length of the silicone-oxygen chain, the thermal conductivity of 79 nm-long crystalline silicone rubber could reach 1.49 W/(m·K). The thermal conductivity of amorphous silicone rubber is less affected by the chain length. The temperature dependence of thermal conductivity of silicone rubbers with different morphologies is trivial. The phonon density of states (DOS) is calculated and analyzed. The results indicate that crystalline silicone rubber with aligned orientation has more low frequency phonons, longer phonon MFP, and shorter conducting path, which contribute to a larger thermal conductivity.
Keywords:  silicone rubber      chain length      thermal conductivity      molecular dynamics simulation  
Received:  18 December 2019      Revised:  09 February 2020      Accepted manuscript online: 
PACS:  66.10.cd (Thermal diffusion and diffusive energy transport)  
  66.30.hk (Polymers)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51621062) and the National Natural Science Foundation of China (Grant No. 51802144).
Corresponding Authors:  Xin-Gang Liang     E-mail:  liangxg@tsinghua.edu.cn

Cite this article: 

Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚) Molecular dynamics simulation of thermal conductivity of silicone rubber 2020 Chin. Phys. B 29 046601

[1] Li Q, Liu H B and Zhu M B 2006 Electron. Proc. Technol. 27 165 (in Chinese)
[2] Fu G C, Gao Z X, Wan Z Q and Zou H 2004 Electro. Mech. Eng. 20 13 (in Chinese)
[3] Yin H B and Gao X N 2013 Guangdong Chem. Ind. 40 67 (in Chinese)
[4] Yang B C, Chen W Y, Zeng L and Hu Y D 2006 Annual Electronic Components Conference, August 15-19, 2006 Xining, China, p. 111
[5] Lei H J, Wang M L and Gong W F 2006 Henan Chem. Ind. 23 20 (in Chinese)
[6] Kemaloglu S, Ozkoc G and Aytac A 2010 Thermochim. Acta 499 40
[7] Chen J, Wang X G and Zhang H Y 2012 Appl. Mech. Mater. 251 338
[8] Song J N, Chen C B and Yong Z 2018 Compos. Part. A 105 1
[9] Wang J B, Bao Y B, Li Q Y and Wu C F 2012 Acta Mater. Compositae Sin. 29 6 (in Chinese)
[10] Mu Q H, Feng S Y and Diao G Z 2007 Polym. Compos. 28 125
[11] Pan D H, Liu M, Meng Y and Qi S C 2004 Chin. Rubber Ind. 51 534 (in Chinese)
[12] Mao J H 2014 Research on Preparation and Performance of Conductive Silicone Rubber for High-power LED Heat Dissipation (MS dissertation) (Chongqing: Chongqing University) (in Chinese)
[13] Gao B Z, Xu J Z, Peng J J, Kang F Y, Du H D, Li J, Chiang S W, Xu C J, Hu N and Ning X S 2015 Thermochim. Acta 614 1
[14] Han X W 2006 Preparation and property study of thermal-conductive silicone rubber (MS dissertation) (Hangzhou: Zhejiang University) (in Chinese)
[15] Sim L C, Ramanan S R, Ismail H, Seetharamu K N and Goh T J 2005 Thermochim. Acta 430 155
[16] Lu Y L, Wang J Y, Wang X B, Liu L, Tian M, Guan X Y and Zhang L Q 2018 Polym. Compos. 39 1364
[17] Mou Q H and Feng D Y 2008 Patent CHN 101284925 [2008-10-15] (in Chinese)
[18] Chen F 2008 Patent CHN 101168620 [2008-04-30] (in Chinese)
[19] Luo T F, Esfarjani K, Shiomi J C, Henry A and Chen G 2011 J. Appl. Phys. 109 074321
[20] Liu J and Yang R G 2012 Phys. Rev. B 86 104307
[21] Mark J 1999 Polymer Data Handbook (New York: Oxford University Press) p. 417
[22] Cao B Y, Kong J, Xu Y, Yung K L and Cai A 2013 Heat Transfer Eng. 34 131
[23] Xu Y F, Kraemer D, Song B, Jiang Z, Zhou J W, Loomis J, Wang J J, Li M D, Ghasemi H, Huang X P, Li X B and Chen G 2019 Nat. Commun. 10 1771
[24] Feng X L, Li Z X and Guo Z Y 2001 J. Eng. Thermophys. 22 195 (in Chinese)
[25] Algaer E A and Müller-Plathe F 2012 Soft Mater. 10 42
[26] Terao T, Lussetti E and Müller-Plathe F 2007 Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 75 057701
[27] Müller Plathe F 1997 J. Chem. Phys. 106 6082
[28] Müller-Plathe F and Reith D 1999 Comput. Theor. Polym. Sci. 9 203
[29] Ikeshoji T and Hafskjold B 1994 Mol. Phys. 81 251
[30] Wirnsberger P, Frenkel D and Dellago C 2015 J. Chem. Phys. 143 124104
[31] Zhang M Y, Wang R H, Lin Y P, Li S M, Fu Y Z and Liu Y Q 2015 Polym. Mater.: Sci. Eng. 31 68 (in Chinese)
[32] Sun H 1995 Macromol. 28 701
[33] Sun H and Rigby D 1997 Spectrochim. Acta Part. A 53 1301
[34] Sun H, Jin Z and Yang C 2016 J. Mol. Model. 22 47
[35] https://lammps.sandia.gov/
[36] Hockney R W and Eastwood J W 1981 Computer simulation using particles (Bristol: Institute of Physics Publishing) p. 1
[37] Gronbechjensen N, Hayre N R and Farago O 2014 Comput. Phys. Commun. 185 524
[38] Schneider T and Stoll E P 1978 Phys. Rev. B 17 1302
[39] https://www.dow.com/en-us.html
[40] https://wenku.baidu.com/view/501a46efaeaad1f346933fcf.html
[41] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[42] Gao Y F and Meng Q Y 2010 Acta Matall Sin. 46 1244 (in Chinese)
[43] Lin Y P, Zhang M Y, Gao Y F, Mei L Y, Fu Y Z and Liu Y Q 2014 Acta Polym. Sin. 6 789 (in Chinese)
[44] Wei Z Y, Ni Z H, Bi K D, Chen M H and Chen Y F 2011 Carbon 49 2653
[45] Ju S H, Liang X G and Xu X H 2011 J. Appl. Phys. 110 054318
[46] Ju S H and Liang X G 2012 J. Appl. Phys. 112 064305
[47] Dove. T 1994 Introduction to lattice dynamics (Cambridge: Cambridge University Press) p. 813
[48] Heino P 2007 Eur. Phys. J. B 60 171
[49] Kong L T 2011 Comput. Phys. Commun. 182 2201
[50] Kong L T and Bartels G 2009 Comput. Phys. Commun. 180 1004
[51] Campañá C and Mueser M 2006 Phys. Rev. B 74 075420
[52] Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett. 80 2484
[53] Ju S H and Liang X G 2013 J. Appl. Phys. 113 053513
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[11] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[12] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[13] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[14] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[15] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
No Suggested Reading articles found!