Special Issue:
SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
|
SPECIAL TOPIC—Advanced calculation & characterization of energy storage materials & devices at multiple scale |
Prev
Next
|
|
|
Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study |
Jieyun Zheng(郑杰允)1, Jialiang Liu(刘家亮)2, Suijun Wang(王绥军)2, Fei Luo(罗飞)1, Liubin Ben(贲留斌)1, Hong Li(李泓)1 |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Operation and Control of Renewable Energy, Storage Systems, China Electric Power Research Institute, Beijing, China |
|
|
Abstract Silicon is an important high capacity anode material for the next generation Li-ion batteries. The electrochemical performances of the Si anode are influenced strongly by the properties of the solid electrolyte interphase (SEI). It is well known that the addition of flouroethylene carbonate (FEC) in the carbonate electrolyte is helpful to improve the cyclic performance of the Si anode. The possible origin is suggested to relate to the modification of the SEI. However, detailed information is still absent. In this work, the structural and mechanical properties of the SEI on Si thin film anode in the ethylene-carbonate-based (EC-based) and FEC-based electrolytes at different discharging and charging states have been investigated using a scanning atomic force microscopy force spectroscopy (AFMFS) method. Single-layered, double-layered, and multi-layered SEI structures with various Young's moduli have been visualized three dimensionally at nanoscale based on the hundreds of force curves in certain scanned area. The coverage of the SEI can be obtained quantitatively from the two-dimensional (2D) project plots. The related analysis indicates that more soft SEI layers are covered on the Si anode, and this could explain the benefits of the FEC additive.
|
Received: 30 December 2019
Revised: 26 February 2020
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.45.Fk
|
(Electrodes)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: Project supported by the State Grid Technology Project, China (Grant No. DG71-17-010). |
Corresponding Authors:
Hong Li
E-mail: hli@iphy.ac.cn
|
Cite this article:
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓) Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study 2020 Chin. Phys. B 29 048203
|
[1] |
Thackeray M M, Wolverton C and Isaacs E D 2012 Energ. Envron. Sci. 5 7854
|
[2] |
Scrosati B, Hassoun J and Sun Y K 2011 Energ. Envron. Sci. 4 3287
|
[3] |
Lu J, Chen Z, Ma Z, Pan F, Curtiss L A and Amine K 2016 Nat. Nanotechnol. 11 1031
|
[4] |
Wang Y and Zhong W H 2015 ChemElectroChem. 2 22
|
[5] |
Verma P, Maire P and Novák P 2010 Electrochim. Acta 55 6332
|
[6] |
Jaguemont J, Boulon L and Dubé Y 2016 Appl. Energy 164 99
|
[7] |
Aravindan V, Lee Y S and Madhavi S 2017 Adv. Energy. Mater. 7 1602607
|
[8] |
Li W, Song B and Manthiram A 2017 Chem. Soc. Rev. 46 3006
|
[9] |
Ding Y, Mu D, Wu B, Wang R, Zhao Z and Wu F 2017 Appl. Energy 195 586
|
[10] |
Schulz N, Hausbrand R, Wittich C, Dimesso L and Jaegermann W 2018 J. Electrochem. Soc. 165 A833
|
[11] |
Morales U J E, Bolimowska E, Rouault H, Santos Peña J, Santini C C and Benayad A 2018 J. Phys. Chem. C 122 18223
|
[12] |
Sun H H, Dolocan A, Weeks J A, Rodriguez R, Heller A and Mullins C B 2019 J. Mater. Chem. A 7 17782
|
[13] |
Peled E and Menkin S 2017 J. Electrochem. Soc. 164 A1703
|
[14] |
Yoon T, Milien M S, Parimalam B S and Lucht B L 2017 Chem. Mater 29 3237
|
[15] |
Franco A A, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P and Johansson P 2019 Chem. Rev. 119 4569
|
[16] |
Li H, Huang X, Chen L, Wu Z and Liang Y 1999 Electrochem. Solid State Lett. 2 547
|
[17] |
Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo Y J and Pei N 2000 Solid State Ion 135 181
|
[18] |
Zhang C, Gu L, Kaskhedikar N, Cui G and Maier 2013 J ACS Appl. Mater. Interfaces 5 12340
|
[19] |
Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, Wu M, Song X, Yan C and Liu G 2015 Nano Energy 12 178
|
[20] |
Jin Y, Zhu B, Lu Z, Liu N and Zhu J 2017 Adv. Energy Mater. 7 1700715
|
[21] |
Zhou X, Chen J, Gu L and Miao L 2015 Chin. Phys. Lett. 32 026102
|
[22] |
Xu H, Zhang H, Ma J, Xu G, Dong T, Chen J and Cui G 2019 ACS Energy Lett. 4 2871
|
[23] |
Chan C, Ruffo R, Hong S S and Cui Y 2009 J. Power. Sources 189 1132
|
[24] |
Dupré N, Moreau P, De Vito E, Quazuguel L, Boniface M, Bordes A, Rudisch C, Bayle G P and Guyomard D 2016 Chem. Mater 28 2557
|
[25] |
Wang C, Ouyang L, Fan W, Liu J, Yang L, Yu L and Zhu M 2019 J. Alloys Compd. 805 757
|
[26] |
Wang J, Zhang L and Zhang H 2018 Ionics 24 3691
|
[27] |
Wang W and Yang S 2017 J. Alloys Compd. 695 3249
|
[28] |
Jo H, Kim J, Nguyen D T, Kang K K, Jeon D M, Yang A R and Song S W 2016 J. Phys. Chem. C 120 22466
|
[29] |
Nguyen C C and Lucht B L 2018 J. Electrochem. Soc. 165 A2154
|
[30] |
Li Q, Liu X, Han X, Xiang Y, Zhong G, Wang J, Zheng B, Zhou J and Yang Y 2019 ACS Appl. Mater. Interfaces 11 14066
|
[31] |
Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S and Klose M 2017 Energy Storage Mater. 6 26
|
[32] |
Srivastav S, Xu C, Edström K, Gustafsson T and Brandell D 2017 Electrochim. Acta 258 755
|
[33] |
Lindgren F, Xu C, Niedzicki L, Marcinek M, Gustafsson T, Björefors F, Edström K and Younesi R 2016 ACS Appl. Mater. Interfaces 8 15758
|
[34] |
Schroder K, Alvarado J, Yersak T A, Li J, Dudney N, Webb L J, Meng Y S and Stevenson K J 2015 Chem. Mater. 27 5531
|
[35] |
Wu C J, Rath P C, Patra J, Bresser D, Passerini S, Umesh B, Dong Q, Lee T C and Chang J K 2019 ACS Appl. Mater. Interfaces 11 42049
|
[36] |
Erickson E M, Markevich E, Salitra G, Sharon D, Hirshberg D, de la Llave E, Shterenberg I, Rosenman A, Frimer A and Aurbach D 2015 J. Electrochem. Soc. 162 A2424
|
[37] |
Xu Z, Yang J, Li H, Nuli Y and Wang J 2019 J. Mater. Chem. A 7 9432
|
[38] |
Yao K, Zheng J P and Liang R 2018 J. Power. Sources 381 164
|
[39] |
Dunn R P, Nguyen C C and Lucht B L 2015 J. Appl. Electrochem 45 873
|
[40] |
Men F, Yang Y, Shang Y, Zhang H, Song Z, Zhou Y, Zhou X and Zhan H 2018 J. Power. Sources 401 354
|
[41] |
Ababtain K, Babu G, Lin X, Rodrigues M T F, Gullapalli H, Ajayan P M, Grinstaff M W and Arava L M R 2016 ACS Appl. Mater. Interfaces 8 15242
|
[42] |
Aurbach D, Zaban A, Ein E Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A and Granot E 1997 J. Power. Sources 68 91
|
[43] |
Alliata D, Kötz R, Novák P and Siegenthaler H 2000 Electrochem. Commun. 2 436
|
[44] |
Chu A C, Josefowicz J Y and Farrington G C 1997 J. Electrochem. Soc. 144 4161
|
[45] |
Jeong S K, Inaba M, Iriyama Y, Abe T and Ogumi Z 2003 J. Power. Sources 119-121 555
|
[46] |
Inaba M, Tomiyasu H, Tasaka A, Jeong S K and Ogumi Z 2004 Langmui 20 1348
|
[47] |
Luo F, Chu G, Xia X, Liu B, Zheng J, Li J, Li H, Gu C and Chen L 2015 Nanoscale 7 7651
|
[48] |
Becker C R, Strawhecker K E, McAllister Q P and Lundgren C A 2013 Acs. Nano 7 9173
|
[49] |
Beaulieu L Y, Hatchard T D, Bonakdarpour A, Fleischauer M D and Dahn J R 2003 J. Electrochem. Soc. 150 A1457
|
[50] |
Wang Y H, He Y, Xiao R J, Li H, Aifantis K E and Huang X J 2012 J. Power. Sources 202 236
|
[51] |
Zhang J, Yang X, Wang R, Dong W, Lu W, Wu X, Wang X, Li H and Chen L 2014 J. Phys. Chem. C 118 20756
|
[52] |
Hu X, Chan N, Martini A and Egberts P 2017 Nanotechnology 28 025702
|
[53] |
Han M, Zhu C, Ma T, Pan Z, Tao Z and Chen J 2018 Chem. Commun. 54 2381
|
[54] |
He Y, Yu X, Li G, Wang R, Li H, Wang Y, Gao H and Huang X 2012 J. Power. Sources 216 131
|
[55] |
Lee H, Shin W, Choi J W and Park J Y 2012 J. Phys. D 45 275301
|
[56] |
La Mantia F and Novák P 2008 Electrochem. Solid State Lett. 11 84
|
[57] |
Kircheva N, Genies S, Brun-Buisson D and Thivel P X 2011 J. Electrochem. Soc. 159 A18
|
[58] |
Shin J S, Han C H, Jung U H, Lee S I, Kim H J and Kim K 2002 J. Power. Sources 109 47
|
[59] |
Domke J and Radmacher M 1998 Langmuir 14 3320
|
[60] |
Choi N S, Yew K H, Lee K Y, Sung M, Kim H and Kim S S 2006 J. Power. Sources 161 1254
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|