|
|
Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms |
Pengwei Li(李鹏伟)1, Yuqing Li(李玉清)1,2, Guosheng Feng(冯国胜)1, Jizhou Wu(武寄洲)1,2, Jie Ma(马杰)1,2, Liantuan Xiao(肖连团)1,2, Suotang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We study the influence of external magnetic field on the shift of the resonant frequency in the photoassociation of ultracold Cs atoms, which are captured in a magnetically levitated optical crossed dipole trap. With the increase of the photoassociation laser intensity, the linear variation of the frequency shift is measured by recording the photoassociation spectra of the long-range 0u+ state of Cs molecule below the 6S1/2+6P1/2 dissociation limit at different magnetic fields. The slope of the frequency shift to the intensity of the photoassociation laser exhibits a strong dependence on the external magnetic field. The experimental data is simulated with an analytic theory model, in which a single channel rectangular potential with the tunable well depth is introduced to acquire the influence of the magnetic field on the atomic behavior in the effective range where photoassociation occurs.
|
Received: 27 September 2018
Revised: 22 November 2018
Accepted manuscript online:
|
PACS:
|
37.10.Pq
|
(Trapping of molecules)
|
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
33.70.Jg
|
(Line and band widths, shapes, and shifts)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the Chang Jiang Scholars and Innovative Research Team in the University of the Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, 61705123, and 11434007), the Fund for Shanxi 1331 Project Key Subjects Construction, China, and the Applied Basic Research Project of Shanxi Province, China (Grant No. 201701D221002). |
Corresponding Authors:
Yuqing Li
E-mail: lyqing.2006@163.com
|
Cite this article:
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂) Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms 2019 Chin. Phys. B 28 013702
|
[1] |
Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
|
[2] |
Krems R, Friedrich B and Stwalley W C 2009 CRC Press 753 279
|
[3] |
Krems R V 2005 Int. Rev. Phys. Chem. 24 99
|
[4] |
Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
|
[5] |
DeMille D, Sainis S, Saga J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202
|
[6] |
Beloy K, Borschevsky A, Flambaum V V and Schwerdtfeger P 2011 Phys. Rev. A 84 042117
|
[7] |
Sainis S, Saga J, Tiesinga E, Kotochigova S, Bergeman T and DeMille D 2012 Phys. Rev. A 86 022513
|
[8] |
Ma J, Chen P, Liu W L, Feng G S, Li Y Q, Wu J Z, Xiao L T and Jia S T 2013 Acta Phys. Sin. 62 223301 (in Chinese)
|
[9] |
Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
|
[10] |
DeMille D 2002 Phys. Rev. Lett. 88 067901
|
[11] |
Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F and Pillet P 1998 Phys. Rev. Lett. 80 4402
|
[12] |
Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S and Ye J 2013 Nature 501 521
|
[13] |
Molony P K, Gregory P D, Ji Z, Lu B, Köpinger M P, Sueur C R L, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301
|
[14] |
Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
|
[15] |
Zhang W, Xie T, Huang Y, Wang G R and Cong S L 2013 Chin. Phys. B 22 013301
|
[16] |
Wang Y, Yue D G, Zhou X C, Guo Y H and Meng Q T 2017 Chin. Phys. B 26 043202
|
[17] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[18] |
Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414
|
[19] |
Liu W, Wang X, Wu J, Su X, Wang S, Sovkov V B, Ma J, Xiao L and Jia S 2017 Phys. Rev. A 96 022504
|
[20] |
Portier M, Moal S, Kim J, Leduc M, Cohen-Tannoudji C and Delieu O 2006 J. Phys. B 39 S881
|
[21] |
Prodan I D, Pichler M, Junker M, Hulet R G and Bohn J L 2003 Phys. Rev. Lett. 91 080402
|
[22] |
McKenzie C, Denschlag J H, Häffner H, Browaeys A, Araujo L E E, Fatemi F K, Jones K M, Simsarian J E, Cho D, Somoni A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L and Phillips W D 2002 Phys. Rev. Lett. 88 120403
|
[23] |
Simoni A, Julienne P S, Tiesinga E and Williams C J 2002 Phys. Rev. A 66 063406
|
[24] |
Wu J Z, Ji Z H, Zhang Y C, Wang L R, Zhao Y T, Ma J, Xiao L T and Jia S T 2011 Opt. Lett. 36 2038
|
[25] |
Zhang Y C, Ma J, Li Y Q, Wu J Z, Zhang L J, Chen G, Wang L R, Zhao Y T, Xiao L T and Jia S T 2012 Appl. Phys. Lett. 101 131114
|
[26] |
Kim J, Moal S, Portier M, Dugué J, Leduc M and Cohen-Tannoudji C 2005 Europhys. Lett. 72 548
|
[27] |
Fedichev P O, Kagan Y, Shlyapnikov G V and Walraven J T M 1996 Phys. Rev. Lett. 77 2913
|
[28] |
Junker M, Dries D, Welford C, Hitchcock J, Chen Y P and Hulet R G 2008 Phys. Rev. Lett. 101 060406
|
[29] |
Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl H C and Grimm R 2004 Appl. Phys. B 79 1013
|
[30] |
Li Y, Feng G, Xu R, Wang X, Wu J, Chen G, Dai X, Ma J, Xiao L and Jia S 2015 Phys. Rev. A 91 053604
|
[31] |
Pichler M, Chen H and Stwalley W C 2004 J. Chem. Phys. 121 1796
|
[32] |
Gerton J M, Frew B J and Hulet R G 2001 Phys. Rev. A 64 053410
|
[33] |
Lange A D, Pilch K, Prantner A, Ferlaino F, Engeser B, Nägerl H C, Grimm R and Chin C 2009 Phys. Rev. A 79 013622
|
[34] |
Feng G S, Li Y Q, Wang X F, Wu J Z, Sovkov V B, Ma J, Xiao L T and Jia S T 2017 Sci. Rep. 7 13677
|
[35] |
Gribakin G F and Flambaum V V 1993 Phys. Rev. A 48 546
|
[36] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[37] |
Chin C, Vuletić V, Kerman A J, Chu S, Tiesinga E, Leo P J and Williams C J 2004 Phys. Rev. A 70 032701
|
[38] |
Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|