Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048201    DOI: 10.1088/1674-1056/ab7906
Special Issue: TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale
TOPICAL REVIEW—Advanced calculation & characterization of energy storage materials & devices at multiple scale Prev   Next  

Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries

Yuqi Li(李钰琦)1,2, Yaxiang Lu(陆雅翔)1,3, Liquan Chen(陈立泉)1,2,3, Yong-Sheng Hu(胡勇胜)1,2,3
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Yangtze River Delta Physics Research Center Co. Ltd, Liyang 213300, China
Abstract  Safety requirements stimulate Na-based batteries to evolve from high-temperature Na-S batteries to room-temperature Na-ion batteries (NIBs). Even so, NIBs may still cause thermal runaway due to the external unexpected accidents and internal high activity of electrodes or electrolytes, which has not been comprehensively summarized yet. In this review, we summarize the significant advances about the failure mechanisms and related strategies to build safer NIBs from the selection of electrodes, electrolytes and the construction of electrode/electrolyte interfaces. Considering the safety risk, the thermal behaviors are emphasized which will deepen the understanding of thermal stability of different NIBs and accelerate the exploitation of safe NIBs.
Keywords:  Na-ion batteries      safety issue      electrodes      electrolytes      solid electrolyte interphase      thermal runaway      failure analysis  
Received:  20 December 2019      Revised:  22 February 2020      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  65.20.-w (Thermal properties of liquids)  
  65.40.gk (Electrochemical properties)  
  88.80.ff (Batteries)  
Fund: Project supported by the National Key Technologies R&D Program, China (Grant No. 2016YFB0901500), the National Natural Science Foundation (NSFC) of China (Grant Nos. 51725206 and 51421002), NSFCUKRI_EPSRC (Grant No. 51861165201), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500), Beijing Municipal Science and Technology Commission, China (Grant No. Z181100004718008), and Beijing Natural Science Fund-Haidian Original Innovation Joint Fund, China (Grant No. L182056).
Corresponding Authors:  Yaxiang Lu, Yong-Sheng Hu     E-mail:  yxlu@iphy.ac.cn;yshu@iphy.ac.cn

Cite this article: 

Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜) Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries 2020 Chin. Phys. B 29 048201

[1] Pan H, Hu Y S and Chen L 2013 Energy & Environ. Sci. 6 2338
[2] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636
[3] Hwang J Y, Myung S T and Sun Y K 2017 Chem. Soc. Rev. 46 3529
[4] Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X Q, Delmas C and Chen L 2019 Joule 3 503
[5] Qi Y, Tong Z, Zhao J, Ma L, Wu T, Liu H, Yang C, Lu J and Hu Y S 2018 Joule 2 2348
[6] Zhao C, Wang Q, Lu Y, Li B, Chen L and Hu Y S 2018 Sci. Bull. 63 1125
[7] Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
[8] Eshetu G G, Diemant T, Hekmatfar M, Grugeon S, Behm R J, Laruelle S, Armand M and Passerini S 2019 Nano Energy 55 327
[9] Liu K, Liu Y, Lin D, Pei A and Cui Y 2018 Sci. Adv. 4 eaas9820
[10] Li Y, Hu Y S, Qi X, Rong X, Li H, Huang X and Chen L 2016 Energy Storage Mater. 5 191
[11] Xie Y, Xu G L, Che H, Wang H, Yang K, Yang X, Guo F, Ren Y, Chen Z, Amine K and Ma Z F 2018 Chem. Mater. 30 4909
[12] Xia X and Dahn J R 2012 Electrochem. Solid-State Lett. 15 A1
[13] Barpanda P, Lander L, Nishimura S I and Yamada A 2018 Adv. Energy Mater. 8 1703055
[14] Barpanda P, Liu G, Ling C D, Tamaru M, Avdeev M, Chung S C, Yamada Y and Yamada A 2013 Chem. Mater. 25 3480
[15] Mu L, Feng X, Kou R, Zhang Y, Guo H, Tian C, Sun C J, Du X W, Nordlund D, Xin H L and Lin F 2018 Adv. Energy Mater. 8 1801975
[16] Yu C Y, Park J S, Jung H G, Chung K Y, Aurbach D, Sun Y K and Myung S T 2015 Energy & Environ. Sci. 8 2019
[17] Guo S, Li Q, Liu P, Chen M and Zhou H 2017 Nat. Commun. 8 135
[18] Hwang J Y, Myung S T, Choi J U, Yoon C S, Yashiro H and Sun Y K 2017 J. Mater. Chem. A 5 23671
[19] Li Y, Lu Y, Meng Q, Jensen A C S, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici M M and Hu Y S 2019 Adv. Energy Mater. 9 1902852
[20] Adams R A, Varma A and Pol V G 2019 Adv. Energy Mater. 9 1900550
[21] Qi Y, Lu Y, Ding F, Zhang Q, Li H, Huang X, Chen L and Hu Y S 2019 Angew Chem. Int. Ed. Engl. 58 4361
[22] Li Y, Lu Y, Adelhelm P, Titirici M M and Hu Y S 2019 Chem. Soc. Rev. 48 4655
[23] Zhao J, Zhao L, Chihara K, Okada S, Yamaki J I, Matsumoto S, Kuze S and Nakane K 2013 J. Power Sources 244 752
[24] Xia X and Dahn J R 2012 J. Electrochem. Soc. 159 A515
[25] Mukai K and Inoue T 2018 Electrochem. Commun. 88 101
[26] Lee Y, Lim H, Kim S O, Kim H S, Kim K J, Lee K Y and Choi W 2018 J. Mater. Chem. A 6 20383
[27] Wang Y, Xiao R, Hu Y S, Avdeev M and Chen L 2015 Nat. Commun. 6 6954
[28] Guo S, Yu H, Liu P, Ren Y, Zhang T, Chen M, Ishida M and Zhou H 2015 Energy & Environ. Sci. 8 1237
[29] Guo S, Liu P, Sun Y, Zhu K, Yi J, Chen M, Ishida M and Zhou H 2015 Angew. Chem. Int. Ed. 54 11701
[30] Li S, Dong Y, Xu L, Xu X, He L and Mai L 2014 Adv. Mater. 26 3545
[31] Eshetu G G, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M and Passerini S 2016 ChemSusChem. 9 462
[32] Ponrouch A, Marchante E, Courty M, Tarascon J M and Palacín M R 2012 Energy & Environ. Sci. 5 8572
[33] Xia X and Dahn J R 2012 J. Electrochem. Soc. 159 A647
[34] Feng J, An Y, Ci L and Xiong S 2015 J. Mater. Chem. A 3 14539
[35] Yang Q, Zhang Z, Sun X G, Hu Y S, Xing H and Dai S 2018 Chem. Soc. Rev. 47 2020
[36] Wu F, Zhu N, Bai Y, Li Y, Wang Z, Ni Q, Wang H and Wu C 2018 Nano Energy 51 524
[37] Ding C, Nohira T, Kuroda K, Hagiwara R, Fukunaga A, Sakai S, Nitta K and Inazawa S 2013 J. Power Sources 238 296
[38] Wongittharom N, Lee T C, Wang C H, Wang Y C and Chang J K 2014 J. Mater. Chem. A 2 5655
[39] Wang J, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y and Yamada A 2018 Nat. Energy 3 22
[40] Yamada Y, Wang J, Ko S, Watanabe E and Yamada A 2019 Nat. Energy 4 269
[41] Jiang X, Liu X, Zeng Z, Xiao L, Ai X, Yang H and Cao Y 2018 IScience 10 114
[42] Feng J, Zhang Z, Li L, Yang J, Xiong S and Qian Y 2015 J. Power Sources 284 222
[43] Di Lecce D, Minnetti L, Polidoro D, Marangon V and Hassoun J 2019 Ionics 25 3129
[44] Zhang J, Wang D W, Lv W, Qin L, Niu S, Zhang S, Cao T, Kang F and Yang Q H 2018 Adv. Energy Mater. 8 1801361
[45] Bin D, Wang F, Tamirat A G, Suo L, Wang Y, Wang C and Xia Y 2018 Adv. Energy Mater. 8 1703008
[46] Suo L, Borodin O, Wang Y, Rong X, Sun W, Fan X, Xu S, Schroeder M A, Cresce A V, Wang F, Yang C, Hu Y S, Xu K and Wang C 2017 Adv. Energy Mater. 7 1701189
[47] Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu Y S and Chen L 2018 Adv. Energy Mater. 8 1703012
[48] Zhao C, Lu Y, Chen L and Hu Y S 2019 InfoMat 2 126
[49] Lalére F, Leriche J B, Courty M, Boulineau S, Viallet V, Masquelier C and Seznec V 2014 J. Power Sources 247 975
[50] Kim J K, Lim Y J, Kim H, Cho G B and Kim Y 2015 Energy & Environ. Sci. 8 3589
[51] Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, Li H, Chen L and Hu Y S 2019 ACS Energy Lett. 4 1650
[52] Zhou D, Liu R, Zhang J, Qi X, He Y B, Li B, Yang Q H, Hu Y S and Kang F 2017 Nano Energy 33 45
[53] Liu F Q, Wang W P, Yin Y X, Zhang S F, Shi J L, Wang L, Zhang X D, Zheng Y, Zhou J J, Li L and Guo Y G 2018 Sci. Adv. 4 eaat5383
[54] Hu Y S, Komaba S, Forsyth M, Johnson C and Rojo T 2019 Small Methods 3 1900184
[55] Feng J, Ci L and Xiong S 2015 RSC Adv. 5 96649
[56] Wen L, Liang J, Chen J, Chu Z Y, Cheng H M and Li F 2019 Small Methods 3 1900323
[57] Lim S Y, Kim H, Shakoor R A, Jung Y and Choi J W 2012 J. Electrochem. Soc. 159 A1393
[1] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[2] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[3] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[4] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[5] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[6] Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations
Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国). Chin. Phys. B, 2021, 30(10): 107102.
[7] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[8] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[9] A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries
Jie Huang(黄杰), Jia-Yue Peng(彭佳悦), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Ji-Liang Qiu(邱纪亮), Jia-Ze Lu(卢嘉泽), Jie-Yun Zheng(郑杰允), Hong Li(李泓), Li-Quan Chen(陈立泉). Chin. Phys. B, 2017, 26(6): 068201.
[10] Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes
Pin Liu(刘品), Qiang Ma(马强), Zheng Fang(方铮), Jie Ma(马洁), Yong-Sheng Hu(胡勇胜), Zhi-Bin Zhou(周志彬), Hong Li(李泓), Xue-Jie Huang(黄学杰), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078203.
[11] Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries
Jiao-Yang Wu(吴娇杨), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Hong Li(李泓), Xiao-Xiong Xu(许晓雄), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078204.
[12] Particles inside electrolytes with ion-specific interactions, their effective charge distributions and effective interactions
Mingnan Ding(丁茗楠), Yihao Liang(梁逸浩), Xiangjun Xing(邢向军). Chin. Phys. B, 2016, 25(10): 108201.
[13] FT-Raman spectroscopy study of solvent-in-salt electrolytes
Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 016101.
[14] Li-ion batteries: Phase transition
Peiyu Hou(侯配玉), Geng Chu(褚赓), Jian Gao(高健), Yantao Zhang(张彦涛), Lianqi Zhang(张联齐). Chin. Phys. B, 2016, 25(1): 016104.
[15] All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
Xiayin Yao(姚霞银), Bingxin Huang(黄冰心), Jingyun Yin(尹景云), Gang Peng(彭刚), Zhen Huang(黄祯), Chao Gao(高超), Deng Liu(刘登), Xiaoxiong Xu(许晓雄). Chin. Phys. B, 2016, 25(1): 018802.
No Suggested Reading articles found!